refactor inv message processing #473

Merged
Atheros1 merged 2 commits from master into master 2013-09-04 05:00:14 +02:00
2 changed files with 56 additions and 42 deletions
Showing only changes of commit 5fab298559 - Show all commits

View File

@ -21,7 +21,8 @@ import helper_inbox
import helper_sent import helper_sent
from helper_sql import * from helper_sql import *
import tr import tr
#from bitmessagemain import shared.lengthOfTimeToLeaveObjectsInInventory, shared.lengthOfTimeToHoldOnToAllPubkeys, shared.maximumAgeOfAnObjectThatIAmWillingToAccept, shared.maximumAgeOfObjectsThatIAdvertiseToOthers, shared.maximumAgeOfNodesThatIAdvertiseToOthers, shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer, shared.neededPubkeys from debug import logger
#from bitmessagemain import shared.lengthOfTimeToLeaveObjectsInInventory, shared.lengthOfTimeToHoldOnToAllPubkeys, shared.maximumAgeOfAnObjectThatIAmWillingToAccept, shared.maximumAgeOfObjectsThatIAdvertiseToOthers, shared.maximumAgeOfNodesThatIAdvertiseToOthers, shared.numberOfObjectsThatWeHaveYetToGetPerPeer, shared.neededPubkeys
# This thread is created either by the synSenderThread(for outgoing # This thread is created either by the synSenderThread(for outgoing
# connections) or the singleListenerThread(for incoming connectiosn). # connections) or the singleListenerThread(for incoming connectiosn).
@ -46,7 +47,7 @@ class receiveDataThread(threading.Thread):
self.peer = shared.Peer(HOST, port) self.peer = shared.Peer(HOST, port)
self.streamNumber = streamNumber self.streamNumber = streamNumber
self.payloadLength = 0 # This is the protocol payload length thus it doesn't include the 24 byte message header self.payloadLength = 0 # This is the protocol payload length thus it doesn't include the 24 byte message header
self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave = {} self.objectsThatWeHaveYetToGetFromThisPeer = {}
self.selfInitiatedConnections = selfInitiatedConnections self.selfInitiatedConnections = selfInitiatedConnections
shared.connectedHostsList[ shared.connectedHostsList[
self.peer.host] = 0 # The very fact that this receiveData thread exists shows that we are connected to the remote host. Let's add it to this list so that an outgoingSynSender thread doesn't try to connect to it. self.peer.host] = 0 # The very fact that this receiveData thread exists shows that we are connected to the remote host. Let's add it to this list so that an outgoingSynSender thread doesn't try to connect to it.
@ -101,7 +102,7 @@ class receiveDataThread(threading.Thread):
print 'Could not delete', self.peer.host, 'from shared.connectedHostsList.', err print 'Could not delete', self.peer.host, 'from shared.connectedHostsList.', err
try: try:
del shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer[ del shared.numberOfObjectsThatWeHaveYetToGetPerPeer[
self.peer] self.peer]
except: except:
pass pass
@ -172,53 +173,54 @@ class receiveDataThread(threading.Thread):
self.data = self.data[ self.data = self.data[
self.payloadLength + 24:] # take this message out and then process the next message self.payloadLength + 24:] # take this message out and then process the next message
if self.data == '': if self.data == '':
while len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) > 0: while len(self.objectsThatWeHaveYetToGetFromThisPeer) > 0:
shared.numberOfInventoryLookupsPerformed += 1 shared.numberOfInventoryLookupsPerformed += 1
random.seed() random.seed()
objectHash, = random.sample( objectHash, = random.sample(
self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave, 1) self.objectsThatWeHaveYetToGetFromThisPeer, 1)
if objectHash in shared.inventory: if objectHash in shared.inventory:
with shared.printLock: with shared.printLock:
print 'Inventory (in memory) already has object listed in inv message.' print 'Inventory (in memory) already has object listed in inv message.'
del self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave[ del self.objectsThatWeHaveYetToGetFromThisPeer[
objectHash] objectHash]
elif shared.isInSqlInventory(objectHash): elif shared.isInSqlInventory(objectHash):
if shared.verbose >= 3: if shared.verbose >= 3:
with shared.printLock: with shared.printLock:
print 'Inventory (SQL on disk) already has object listed in inv message.' print 'Inventory (SQL on disk) already has object listed in inv message.'
del self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave[ del self.objectsThatWeHaveYetToGetFromThisPeer[
objectHash] objectHash]
else: else:
self.sendgetdata(objectHash) self.sendgetdata(objectHash)
del self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave[ del self.objectsThatWeHaveYetToGetFromThisPeer[
objectHash] # It is possible that the remote node doesn't respond with the object. In that case, we'll very likely get it from someone else anyway. objectHash] # It is possible that the remote node doesn't respond with the object. In that case, we'll very likely get it from someone else anyway.
if len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) == 0: print 'concerning', self.peer.host, ', len(self.objectsThatWeHaveYetToGetFromThisPeer) is', len(self.objectsThatWeHaveYetToGetFromThisPeer)
if len(self.objectsThatWeHaveYetToGetFromThisPeer) == 0:
with shared.printLock: with shared.printLock:
print '(concerning', str(self.peer) + ')', 'number of objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave is now', len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) print '(concerning', str(self.peer) + ')', 'number of objectsThatWeHaveYetToGetFromThisPeer is now', len(self.objectsThatWeHaveYetToGetFromThisPeer)
try: try:
del shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer[ del shared.numberOfObjectsThatWeHaveYetToGetPerPeer[
self.peer] # this data structure is maintained so that we can keep track of how many total objects, across all connections, are currently outstanding. If it goes too high it can indicate that we are under attack by multiple nodes working together. self.peer] # this data structure is maintained so that we can keep track of how many total objects, across all connections, are currently outstanding. If it goes too high it can indicate that we are under attack by multiple nodes working together.
except: except:
pass pass
break break
if len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) == 0: if len(self.objectsThatWeHaveYetToGetFromThisPeer) == 0:
with shared.printLock: with shared.printLock:
print '(concerning', str(self.peer) + ')', 'number of objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave is now', len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) print '(concerning', str(self.peer) + ')', 'number of objectsThatWeHaveYetToGetFromThisPeer is now', len(self.objectsThatWeHaveYetToGetFromThisPeer)
try: try:
del shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer[ del shared.numberOfObjectsThatWeHaveYetToGetPerPeer[
self.peer] # this data structure is maintained so that we can keep track of how many total objects, across all connections, are currently outstanding. If it goes too high it can indicate that we are under attack by multiple nodes working together. self.peer] # this data structure is maintained so that we can keep track of how many total objects, across all connections, are currently outstanding. If it goes too high it can indicate that we are under attack by multiple nodes working together.
except: except:
pass pass
if len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) > 0: if len(self.objectsThatWeHaveYetToGetFromThisPeer) > 0:
with shared.printLock: with shared.printLock:
print '(concerning', str(self.peer) + ')', 'number of objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave is now', len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) print '(concerning', str(self.peer) + ')', 'number of objectsThatWeHaveYetToGetFromThisPeer is now', len(self.objectsThatWeHaveYetToGetFromThisPeer)
shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer[self.peer] = len( shared.numberOfObjectsThatWeHaveYetToGetPerPeer[self.peer] = len(
self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) # this data structure is maintained so that we can keep track of how many total objects, across all connections, are currently outstanding. If it goes too high it can indicate that we are under attack by multiple nodes working together. self.objectsThatWeHaveYetToGetFromThisPeer) # this data structure is maintained so that we can keep track of how many total objects, across all connections, are currently outstanding. If it goes too high it can indicate that we are under attack by multiple nodes working together.
if len(self.ackDataThatWeHaveYetToSend) > 0: if len(self.ackDataThatWeHaveYetToSend) > 0:
self.data = self.ackDataThatWeHaveYetToSend.pop() self.data = self.ackDataThatWeHaveYetToSend.pop()
self.processData() self.processData()
@ -1405,13 +1407,13 @@ class receiveDataThread(threading.Thread):
# We have received an inv message # We have received an inv message
def recinv(self, data): def recinv(self, data):
totalNumberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave = 0 # ..from all peers, counting duplicates seperately (because they take up memory) totalNumberOfobjectsThatWeHaveYetToGetFromAllPeers = 0 # this counts duplicates seperately because they take up memory
if len(shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer) > 0: if len(shared.numberOfObjectsThatWeHaveYetToGetPerPeer) > 0:
for key, value in shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer.items(): for key, value in shared.numberOfObjectsThatWeHaveYetToGetPerPeer.items():
totalNumberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave += value totalNumberOfobjectsThatWeHaveYetToGetFromAllPeers += value
with shared.printLock: with shared.printLock:
print 'number of keys(hosts) in shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer:', len(shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer) print 'number of keys(hosts) in shared.numberOfObjectsThatWeHaveYetToGetPerPeer:', len(shared.numberOfObjectsThatWeHaveYetToGetPerPeer)
print 'totalNumberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave = ', totalNumberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave print 'totalNumberOfobjectsThatWeHaveYetToGetFromAllPeers = ', totalNumberOfobjectsThatWeHaveYetToGetFromAllPeers
numberOfItemsInInv, lengthOfVarint = decodeVarint(data[:10]) numberOfItemsInInv, lengthOfVarint = decodeVarint(data[:10])
if numberOfItemsInInv > 50000: if numberOfItemsInInv > 50000:
@ -1421,9 +1423,9 @@ class receiveDataThread(threading.Thread):
print 'inv message doesn\'t contain enough data. Ignoring.' print 'inv message doesn\'t contain enough data. Ignoring.'
return return
if numberOfItemsInInv == 1: # we'll just request this data from the person who advertised the object. if numberOfItemsInInv == 1: # we'll just request this data from the person who advertised the object.
if totalNumberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave > 200000 and len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) > 1000: # inv flooding attack mitigation if totalNumberOfobjectsThatWeHaveYetToGetFromAllPeers > 200000 and len(self.objectsThatWeHaveYetToGetFromThisPeer) > 1000: # inv flooding attack mitigation
with shared.printLock: with shared.printLock:
print 'We already have', totalNumberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave, 'items yet to retrieve from peers and over 1000 from this node in particular. Ignoring this inv message.' print 'We already have', totalNumberOfobjectsThatWeHaveYetToGetFromAllPeers, 'items yet to retrieve from peers and over 1000 from this node in particular. Ignoring this inv message.'
return return
self.someObjectsOfWhichThisRemoteNodeIsAlreadyAware[ self.someObjectsOfWhichThisRemoteNodeIsAlreadyAware[
@ -1432,26 +1434,38 @@ class receiveDataThread(threading.Thread):
if data[lengthOfVarint:32 + lengthOfVarint] in shared.inventory: if data[lengthOfVarint:32 + lengthOfVarint] in shared.inventory:
with shared.printLock: with shared.printLock:
print 'Inventory (in memory) has inventory item already.' print 'Inventory (in memory) has inventory item already.'
elif shared.isInSqlInventory(data[lengthOfVarint:32 + lengthOfVarint]): elif shared.isInSqlInventory(data[lengthOfVarint:32 + lengthOfVarint]):
print 'Inventory (SQL on disk) has inventory item already.' print 'Inventory (SQL on disk) has inventory item already.'
else: else:
self.sendgetdata(data[lengthOfVarint:32 + lengthOfVarint]) self.sendgetdata(data[lengthOfVarint:32 + lengthOfVarint])
else: else:
print 'inv message lists', numberOfItemsInInv, 'objects.' # There are many items listed in this inv message. Let us create a
for i in range(numberOfItemsInInv): # upon finishing dealing with an incoming message, the receiveDataThread will request a random object from the peer. This way if we get multiple inv messages from multiple peers which list mostly the same objects, we will make getdata requests for different random objects from the various peers. # 'set' of objects we are aware of and a set of objects in this inv
if len(data[lengthOfVarint + (32 * i):32 + lengthOfVarint + (32 * i)]) == 32: # The length of an inventory hash should be 32. If it isn't 32 then the remote node is either badly programmed or behaving nefariously. # message so that we can diff one from the other cheaply.
if totalNumberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave > 200000 and len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) > 1000: # inv flooding attack mitigation startTime = time.time()
with shared.printLock: currentInventoryList = set()
print 'We already have', totalNumberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave, 'items yet to retrieve from peers and over', len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave), 'from this node in particular. Ignoring the rest of this inv message.' queryData = sqlQuery('''SELECT hash FROM inventory WHERE streamnumber=?''',
self.streamNumber)
break for row in queryData:
self.someObjectsOfWhichThisRemoteNodeIsAlreadyAware[data[ currentInventoryList.add(row[0])
lengthOfVarint + (32 * i):32 + lengthOfVarint + (32 * i)]] = 0 with shared.inventoryLock:
self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave[ for objectHash, value in shared.inventory.items():
data[lengthOfVarint + (32 * i):32 + lengthOfVarint + (32 * i)]] = 0 currentInventoryList.add(objectHash)
shared.numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer[ advertisedSet = set()
self.peer] = len(self.objectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHave) for i in range(numberOfItemsInInv):
advertisedSet.add(data[lengthOfVarint + (32 * i):32 + lengthOfVarint + (32 * i)])
objectsNewToMe = advertisedSet - currentInventoryList
logger.info('inv message lists %s objects. Of those %s are new to me. It took %s seconds to figure that out.', numberOfItemsInInv, len(objectsNewToMe), time.time()-startTime)
for item in objectsNewToMe:
if totalNumberOfobjectsThatWeHaveYetToGetFromAllPeers > 200000 and len(self.objectsThatWeHaveYetToGetFromThisPeer) > 1000: # inv flooding attack mitigation
with shared.printLock:
print 'We already have', totalNumberOfobjectsThatWeHaveYetToGetFromAllPeers, 'items yet to retrieve from peers and over', len(self.objectsThatWeHaveYetToGetFromThisPeer), 'from this node in particular. Ignoring the rest of this inv message.'
break
self.someObjectsOfWhichThisRemoteNodeIsAlreadyAware[item] = 0 # helps us keep from sending inv messages to peers that already know about the objects listed therein
self.objectsThatWeHaveYetToGetFromThisPeer[item] = 0 # upon finishing dealing with an incoming message, the receiveDataThread will request a random object of from peer out of this data structure. This way if we get multiple inv messages from multiple peers which list mostly the same objects, we will make getdata requests for different random objects from the various peers.
if len(self.objectsThatWeHaveYetToGetFromThisPeer) > 0:
shared.numberOfObjectsThatWeHaveYetToGetPerPeer[
self.peer] = len(self.objectsThatWeHaveYetToGetFromThisPeer)
# Send a getdata message to our peer to request the object with the given # Send a getdata message to our peer to request the object with the given
# hash # hash

View File

@ -53,7 +53,7 @@ alreadyAttemptedConnectionsList = {
alreadyAttemptedConnectionsListLock = threading.Lock() alreadyAttemptedConnectionsListLock = threading.Lock()
alreadyAttemptedConnectionsListResetTime = int( alreadyAttemptedConnectionsListResetTime = int(
time.time()) # used to clear out the alreadyAttemptedConnectionsList periodically so that we will retry connecting to hosts to which we have already tried to connect. time.time()) # used to clear out the alreadyAttemptedConnectionsList periodically so that we will retry connecting to hosts to which we have already tried to connect.
numberOfObjectsThatWeHaveYetToCheckAndSeeWhetherWeAlreadyHavePerPeer = {} numberOfObjectsThatWeHaveYetToGetPerPeer = {}
neededPubkeys = {} neededPubkeys = {}
eightBytesOfRandomDataUsedToDetectConnectionsToSelf = pack( eightBytesOfRandomDataUsedToDetectConnectionsToSelf = pack(
'>Q', random.randrange(1, 18446744073709551615)) '>Q', random.randrange(1, 18446744073709551615))