Lee Miller
99fda8c84f
remove redundant parentheses, reuse Cipher.gen_IV(), fix misspelled ECDH and a wrong docstring for .get_curve(). |
||
---|---|---|
.. | ||
tests | ||
__init__.py | ||
arithmetic.py | ||
cipher.py | ||
ecc.py | ||
eccblind.py | ||
eccblindchain.py | ||
hash.py | ||
LICENSE | ||
openssl.py | ||
README.md |
PyElliptic
PyElliptic is a high level wrapper for the cryptographic library : OpenSSL. Under the GNU General Public License
Python3 compatible. For GNU/Linux and Windows. Require OpenSSL
Features
Asymmetric cryptography using Elliptic Curve Cryptography (ECC)
- Key agreement : ECDH
- Digital signatures : ECDSA
- Hybrid encryption : ECIES (like RSA)
Symmetric cryptography
- AES-128 (CBC, OFB, CFB)
- AES-256 (CBC, OFB, CFB)
- Blowfish (CFB and CBC)
- RC4
Other
- CSPRNG
- HMAC (using SHA512)
- PBKDF2 (SHA256 and SHA512)
Example
#!/usr/bin/python
import pyelliptic
# Symmetric encryption
iv = pyelliptic.Cipher.gen_IV('aes-256-cfb')
ctx = pyelliptic.Cipher("secretkey", iv, 1, ciphername='aes-256-cfb')
ciphertext = ctx.update('test1')
ciphertext += ctx.update('test2')
ciphertext += ctx.final()
ctx2 = pyelliptic.Cipher("secretkey", iv, 0, ciphername='aes-256-cfb')
print ctx2.ciphering(ciphertext)
# Asymmetric encryption
alice = pyelliptic.ECC() # default curve: sect283r1
bob = pyelliptic.ECC(curve='sect571r1')
ciphertext = alice.encrypt("Hello Bob", bob.get_pubkey())
print bob.decrypt(ciphertext)
signature = bob.sign("Hello Alice")
# alice's job :
print pyelliptic.ECC(pubkey=bob.get_pubkey()).verify(signature, "Hello Alice")
# ERROR !!!
try:
key = alice.get_ecdh_key(bob.get_pubkey())
except: print("For ECDH key agreement, the keys must be defined on the same curve !")
alice = pyelliptic.ECC(curve='sect571r1')
print alice.get_ecdh_key(bob.get_pubkey()).encode('hex')
print bob.get_ecdh_key(alice.get_pubkey()).encode('hex')