This repository has been archived on 2024-12-03. You can view files and clone it, but cannot push or open issues or pull requests.
PyBitmessage-2024-12-03/src/highlevelcrypto.py

233 lines
6.9 KiB
Python

"""
High level cryptographic functions based on `.pyelliptic` OpenSSL bindings.
.. note::
Upstream pyelliptic was upgraded from SHA1 to SHA256 for signing. We must
`upgrade PyBitmessage gracefully. <https://github.com/Bitmessage/PyBitmessage/issues/953>`_
`More discussion. <https://github.com/yann2192/pyelliptic/issues/32>`_
"""
import hashlib
import os
from binascii import hexlify
import pyelliptic
from pyelliptic import OpenSSL
from pyelliptic import arithmetic as a
from fallback import RIPEMD160Hash
__all__ = [
'decodeWalletImportFormat', 'deterministic_keys',
'double_sha512', 'calculateInventoryHash', 'encodeWalletImportFormat',
'encrypt', 'makeCryptor', 'pointMult', 'privToPub', 'randomBytes',
'random_keys', 'sign', 'to_ripe', 'verify']
# WIF (uses arithmetic ):
def decodeWalletImportFormat(WIFstring):
"""
Convert private key from base58 that's used in the config file to
8-bit binary string.
"""
fullString = a.changebase(WIFstring, 58, 256)
privkey = fullString[:-4]
if fullString[-4:] != \
hashlib.sha256(hashlib.sha256(privkey).digest()).digest()[:4]:
raise ValueError('Checksum failed')
elif privkey[0:1] == b'\x80': # checksum passed
return privkey[1:]
raise ValueError('No hex 80 prefix')
# An excellent way for us to store our keys
# is in Wallet Import Format. Let us convert now.
# https://en.bitcoin.it/wiki/Wallet_import_format
def encodeWalletImportFormat(privKey):
"""
Convert private key from binary 8-bit string into base58check WIF string.
"""
privKey = b'\x80' + privKey
checksum = hashlib.sha256(hashlib.sha256(privKey).digest()).digest()[0:4]
return a.changebase(privKey + checksum, 256, 58)
# Random
def randomBytes(n):
"""Get n random bytes"""
try:
return os.urandom(n)
except NotImplementedError:
return OpenSSL.rand(n)
# Hashes
def _bm160(data):
"""RIPEME160(SHA512(data)) -> bytes"""
return RIPEMD160Hash(hashlib.sha512(data).digest()).digest()
def to_ripe(signing_key, encryption_key):
"""Convert two public keys to a ripe hash"""
return _bm160(signing_key + encryption_key)
def double_sha512(data):
"""Binary double SHA512 digest"""
return hashlib.sha512(hashlib.sha512(data).digest()).digest()
def calculateInventoryHash(data):
"""Calculate inventory hash from object data"""
return double_sha512(data)[:32]
# Keys
def random_keys():
"""Return a pair of keys, private and public"""
priv = randomBytes(32)
pub = pointMult(priv)
return priv, pub
def deterministic_keys(passphrase, nonce):
"""Generate keys from *passphrase* and *nonce* (encoded as varint)"""
priv = hashlib.sha512(passphrase + nonce).digest()[:32]
pub = pointMult(priv)
return priv, pub
def hexToPubkey(pubkey):
"""Convert a pubkey from hex to binary"""
pubkey_raw = a.changebase(pubkey[2:], 16, 256, minlen=64)
pubkey_bin = b'\x02\xca\x00 ' + pubkey_raw[:32] + b'\x00 ' + pubkey_raw[32:]
return pubkey_bin
def privToPub(privkey):
"""Converts hex private key into hex public key"""
private_key = a.changebase(privkey, 16, 256, minlen=32)
public_key = pointMult(private_key)
return hexlify(public_key)
def pointMult(secret):
"""
Does an EC point multiplication; turns a private key into a public key.
Evidently, this type of error can occur very rarely:
>>> File "highlevelcrypto.py", line 54, in pointMult
>>> group = OpenSSL.EC_KEY_get0_group(k)
>>> WindowsError: exception: access violation reading 0x0000000000000008
"""
while True:
try:
k = OpenSSL.EC_KEY_new_by_curve_name(
OpenSSL.get_curve('secp256k1'))
priv_key = OpenSSL.BN_bin2bn(secret, 32, None)
group = OpenSSL.EC_KEY_get0_group(k)
pub_key = OpenSSL.EC_POINT_new(group)
OpenSSL.EC_POINT_mul(group, pub_key, priv_key, None, None, None)
OpenSSL.EC_KEY_set_private_key(k, priv_key)
OpenSSL.EC_KEY_set_public_key(k, pub_key)
size = OpenSSL.i2o_ECPublicKey(k, None)
mb = OpenSSL.create_string_buffer(size)
OpenSSL.i2o_ECPublicKey(k, OpenSSL.byref(OpenSSL.pointer(mb)))
return mb.raw
except Exception:
import traceback
import time
traceback.print_exc()
time.sleep(0.2)
finally:
OpenSSL.EC_POINT_free(pub_key)
OpenSSL.BN_free(priv_key)
OpenSSL.EC_KEY_free(k)
# Encryption
def makeCryptor(privkey, curve='secp256k1'):
"""Return a private `.pyelliptic.ECC` instance"""
private_key = a.changebase(privkey, 16, 256, minlen=32)
public_key = pointMult(private_key)
cryptor = pyelliptic.ECC(
pubkey_x=public_key[1:-32], pubkey_y=public_key[-32:],
raw_privkey=private_key, curve=curve)
return cryptor
def makePubCryptor(pubkey):
"""Return a public `.pyelliptic.ECC` instance"""
pubkey_bin = hexToPubkey(pubkey)
return pyelliptic.ECC(curve='secp256k1', pubkey=pubkey_bin)
def encrypt(msg, hexPubkey):
"""Encrypts message with hex public key"""
return pyelliptic.ECC(curve='secp256k1').encrypt(
msg, hexToPubkey(hexPubkey))
def decrypt(msg, hexPrivkey):
"""Decrypts message with hex private key"""
return makeCryptor(hexPrivkey).decrypt(msg)
def decryptFast(msg, cryptor):
"""Decrypts message with an existing `.pyelliptic.ECC` object"""
return cryptor.decrypt(msg)
# Signatures
def _choose_digest_alg(name):
"""
Choose openssl digest constant by name raises ValueError if not appropriate
"""
if name not in ("sha1", "sha256"):
raise ValueError("Unknown digest algorithm %s" % name)
return (
# SHA1, this will eventually be deprecated
OpenSSL.digest_ecdsa_sha1 if name == "sha1" else OpenSSL.EVP_sha256)
def sign(msg, hexPrivkey, digestAlg="sha256"):
"""
Signs with hex private key using SHA1 or SHA256 depending on
*digestAlg* keyword.
"""
return makeCryptor(hexPrivkey).sign(
msg, digest_alg=_choose_digest_alg(digestAlg))
def verify(msg, sig, hexPubkey, digestAlg=None):
"""Verifies with hex public key using SHA1 or SHA256"""
# As mentioned above, we must upgrade gracefully to use SHA256. So
# let us check the signature using both SHA1 and SHA256 and if one
# of them passes then we will be satisfied. Eventually this can
# be simplified and we'll only check with SHA256.
if digestAlg is None:
# old SHA1 algorithm.
sigVerifyPassed = verify(msg, sig, hexPubkey, "sha1")
if sigVerifyPassed:
# The signature check passed using SHA1
return True
# The signature check using SHA1 failed. Let us try it with SHA256.
return verify(msg, sig, hexPubkey, "sha256")
try:
return makePubCryptor(hexPubkey).verify(
sig, msg, digest_alg=_choose_digest_alg(digestAlg))
except:
return False