# -*- coding: utf-8 -*- # # Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''Common functionality shared by several modules.''' def bit_size(num): ''' Number of bits needed to represent a integer excluding any prefix 0 bits. As per definition from http://wiki.python.org/moin/BitManipulation and to match the behavior of the Python 3 API. Usage:: >>> bit_size(1023) 10 >>> bit_size(1024) 11 >>> bit_size(1025) 11 :param num: Integer value. If num is 0, returns 0. Only the absolute value of the number is considered. Therefore, signed integers will be abs(num) before the number's bit length is determined. :returns: Returns the number of bits in the integer. ''' if num == 0: return 0 if num < 0: num = -num # Make sure this is an int and not a float. num & 1 hex_num = "%x" % num return ((len(hex_num) - 1) * 4) + { '0':0, '1':1, '2':2, '3':2, '4':3, '5':3, '6':3, '7':3, '8':4, '9':4, 'a':4, 'b':4, 'c':4, 'd':4, 'e':4, 'f':4, }[hex_num[0]] def _bit_size(number): ''' Returns the number of bits required to hold a specific long number. ''' if number < 0: raise ValueError('Only nonnegative numbers possible: %s' % number) if number == 0: return 0 # This works, even with very large numbers. When using math.log(number, 2), # you'll get rounding errors and it'll fail. bits = 0 while number: bits += 1 number >>= 1 return bits def byte_size(number): ''' Returns the number of bytes required to hold a specific long number. The number of bytes is rounded up. Usage:: >>> byte_size(1 << 1023) 128 >>> byte_size((1 << 1024) - 1) 128 >>> byte_size(1 << 1024) 129 :param number: An unsigned integer :returns: The number of bytes required to hold a specific long number. ''' quanta, mod = divmod(bit_size(number), 8) if mod or number == 0: quanta += 1 return quanta #return int(math.ceil(bit_size(number) / 8.0)) def extended_gcd(a, b): '''Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb ''' # r = gcd(a,b) i = multiplicitive inverse of a mod b # or j = multiplicitive inverse of b mod a # Neg return values for i or j are made positive mod b or a respectively # Iterateive Version is faster and uses much less stack space x = 0 y = 1 lx = 1 ly = 0 oa = a #Remember original a/b to remove ob = b #negative values from return results while b != 0: q = a // b (a, b) = (b, a % b) (x, lx) = ((lx - (q * x)),x) (y, ly) = ((ly - (q * y)),y) if (lx < 0): lx += ob #If neg wrap modulo orignal b if (ly < 0): ly += oa #If neg wrap modulo orignal a return (a, lx, ly) #Return only positive values def inverse(x, n): '''Returns x^-1 (mod n) >>> inverse(7, 4) 3 >>> (inverse(143, 4) * 143) % 4 1 ''' (divider, inv, _) = extended_gcd(x, n) if divider != 1: raise ValueError("x (%d) and n (%d) are not relatively prime" % (x, n)) return inv def crt(a_values, modulo_values): '''Chinese Remainder Theorem. Calculates x such that x = a[i] (mod m[i]) for each i. :param a_values: the a-values of the above equation :param modulo_values: the m-values of the above equation :returns: x such that x = a[i] (mod m[i]) for each i >>> crt([2, 3], [3, 5]) 8 >>> crt([2, 3, 2], [3, 5, 7]) 23 >>> crt([2, 3, 0], [7, 11, 15]) 135 ''' m = 1 x = 0 for modulo in modulo_values: m *= modulo for (m_i, a_i) in zip(modulo_values, a_values): M_i = m // m_i inv = inverse(M_i, m_i) x = (x + a_i * M_i * inv) % m return x if __name__ == '__main__': import doctest doctest.testmod()