"""RSA module pri = k[1] //Private part of keys d,p,q Module for calculating large primes, and RSA encryption, decryption, signing and verification. Includes generating public and private keys. WARNING: this code implements the mathematics of RSA. It is not suitable for real-world secure cryptography purposes. It has not been reviewed by a security expert. It does not include padding of data. There are many ways in which the output of this module, when used without any modification, can be sucessfully attacked. """ __author__ = "Sybren Stuvel, Marloes de Boer and Ivo Tamboer" __date__ = "2010-02-05" __version__ = '1.3.3' # NOTE: Python's modulo can return negative numbers. We compensate for # this behaviour using the abs() function from cPickle import dumps, loads import base64 import math import os import random import sys import types import zlib from rsa._compat import byte # Display a warning that this insecure version is imported. import warnings warnings.warn('Insecure version of the RSA module is imported as %s, be careful' % __name__) def gcd(p, q): """Returns the greatest common divisor of p and q >>> gcd(42, 6) 6 """ if p<q: return gcd(q, p) if q == 0: return p return gcd(q, abs(p%q)) def bytes2int(bytes): """Converts a list of bytes or a string to an integer >>> (128*256 + 64)*256 + + 15 8405007 >>> l = [128, 64, 15] >>> bytes2int(l) 8405007 """ if not (type(bytes) is types.ListType or type(bytes) is types.StringType): raise TypeError("You must pass a string or a list") # Convert byte stream to integer integer = 0 for byte in bytes: integer *= 256 if type(byte) is types.StringType: byte = ord(byte) integer += byte return integer def int2bytes(number): """Converts a number to a string of bytes >>> bytes2int(int2bytes(123456789)) 123456789 """ if not (type(number) is types.LongType or type(number) is types.IntType): raise TypeError("You must pass a long or an int") string = "" while number > 0: string = "%s%s" % (byte(number & 0xFF), string) number /= 256 return string def fast_exponentiation(a, p, n): """Calculates r = a^p mod n """ result = a % n remainders = [] while p != 1: remainders.append(p & 1) p = p >> 1 while remainders: rem = remainders.pop() result = ((a ** rem) * result ** 2) % n return result def read_random_int(nbits): """Reads a random integer of approximately nbits bits rounded up to whole bytes""" nbytes = ceil(nbits/8.) randomdata = os.urandom(nbytes) return bytes2int(randomdata) def ceil(x): """ceil(x) -> int(math.ceil(x))""" return int(math.ceil(x)) def randint(minvalue, maxvalue): """Returns a random integer x with minvalue <= x <= maxvalue""" # Safety - get a lot of random data even if the range is fairly # small min_nbits = 32 # The range of the random numbers we need to generate range = maxvalue - minvalue # Which is this number of bytes rangebytes = ceil(math.log(range, 2) / 8.) # Convert to bits, but make sure it's always at least min_nbits*2 rangebits = max(rangebytes * 8, min_nbits * 2) # Take a random number of bits between min_nbits and rangebits nbits = random.randint(min_nbits, rangebits) return (read_random_int(nbits) % range) + minvalue def fermat_little_theorem(p): """Returns 1 if p may be prime, and something else if p definitely is not prime""" a = randint(1, p-1) return fast_exponentiation(a, p-1, p) def jacobi(a, b): """Calculates the value of the Jacobi symbol (a/b) """ if a % b == 0: return 0 result = 1 while a > 1: if a & 1: if ((a-1)*(b-1) >> 2) & 1: result = -result b, a = a, b % a else: if ((b ** 2 - 1) >> 3) & 1: result = -result a = a >> 1 return result def jacobi_witness(x, n): """Returns False if n is an Euler pseudo-prime with base x, and True otherwise. """ j = jacobi(x, n) % n f = fast_exponentiation(x, (n-1)/2, n) if j == f: return False return True def randomized_primality_testing(n, k): """Calculates whether n is composite (which is always correct) or prime (which is incorrect with error probability 2**-k) Returns False if the number if composite, and True if it's probably prime. """ q = 0.5 # Property of the jacobi_witness function # t = int(math.ceil(k / math.log(1/q, 2))) t = ceil(k / math.log(1/q, 2)) for i in range(t+1): x = randint(1, n-1) if jacobi_witness(x, n): return False return True def is_prime(number): """Returns True if the number is prime, and False otherwise. >>> is_prime(42) 0 >>> is_prime(41) 1 """ """ if not fermat_little_theorem(number) == 1: # Not prime, according to Fermat's little theorem return False """ if randomized_primality_testing(number, 5): # Prime, according to Jacobi return True # Not prime return False def getprime(nbits): """Returns a prime number of max. 'math.ceil(nbits/8)*8' bits. In other words: nbits is rounded up to whole bytes. >>> p = getprime(8) >>> is_prime(p-1) 0 >>> is_prime(p) 1 >>> is_prime(p+1) 0 """ nbytes = int(math.ceil(nbits/8.)) while True: integer = read_random_int(nbits) # Make sure it's odd integer |= 1 # Test for primeness if is_prime(integer): break # Retry if not prime return integer def are_relatively_prime(a, b): """Returns True if a and b are relatively prime, and False if they are not. >>> are_relatively_prime(2, 3) 1 >>> are_relatively_prime(2, 4) 0 """ d = gcd(a, b) return (d == 1) def find_p_q(nbits): """Returns a tuple of two different primes of nbits bits""" p = getprime(nbits) while True: q = getprime(nbits) if not q == p: break return (p, q) def extended_euclid_gcd(a, b): """Returns a tuple (d, i, j) such that d = gcd(a, b) = ia + jb """ if b == 0: return (a, 1, 0) q = abs(a % b) r = long(a / b) (d, k, l) = extended_euclid_gcd(b, q) return (d, l, k - l*r) # Main function: calculate encryption and decryption keys def calculate_keys(p, q, nbits): """Calculates an encryption and a decryption key for p and q, and returns them as a tuple (e, d)""" n = p * q phi_n = (p-1) * (q-1) while True: # Make sure e has enough bits so we ensure "wrapping" through # modulo n e = getprime(max(8, nbits/2)) if are_relatively_prime(e, n) and are_relatively_prime(e, phi_n): break (d, i, j) = extended_euclid_gcd(e, phi_n) if not d == 1: raise Exception("e (%d) and phi_n (%d) are not relatively prime" % (e, phi_n)) if not (e * i) % phi_n == 1: raise Exception("e (%d) and i (%d) are not mult. inv. modulo phi_n (%d)" % (e, i, phi_n)) return (e, i) def gen_keys(nbits): """Generate RSA keys of nbits bits. Returns (p, q, e, d). Note: this can take a long time, depending on the key size. """ while True: (p, q) = find_p_q(nbits) (e, d) = calculate_keys(p, q, nbits) # For some reason, d is sometimes negative. We don't know how # to fix it (yet), so we keep trying until everything is shiny if d > 0: break return (p, q, e, d) def gen_pubpriv_keys(nbits): """Generates public and private keys, and returns them as (pub, priv). The public key consists of a dict {e: ..., , n: ....). The private key consists of a dict {d: ...., p: ...., q: ....). """ (p, q, e, d) = gen_keys(nbits) return ( {'e': e, 'n': p*q}, {'d': d, 'p': p, 'q': q} ) def encrypt_int(message, ekey, n): """Encrypts a message using encryption key 'ekey', working modulo n""" if type(message) is types.IntType: return encrypt_int(long(message), ekey, n) if not type(message) is types.LongType: raise TypeError("You must pass a long or an int") if message > 0 and \ math.floor(math.log(message, 2)) > math.floor(math.log(n, 2)): raise OverflowError("The message is too long") return fast_exponentiation(message, ekey, n) def decrypt_int(cyphertext, dkey, n): """Decrypts a cypher text using the decryption key 'dkey', working modulo n""" return encrypt_int(cyphertext, dkey, n) def sign_int(message, dkey, n): """Signs 'message' using key 'dkey', working modulo n""" return decrypt_int(message, dkey, n) def verify_int(signed, ekey, n): """verifies 'signed' using key 'ekey', working modulo n""" return encrypt_int(signed, ekey, n) def picklechops(chops): """Pickles and base64encodes it's argument chops""" value = zlib.compress(dumps(chops)) encoded = base64.encodestring(value) return encoded.strip() def unpicklechops(string): """base64decodes and unpickes it's argument string into chops""" return loads(zlib.decompress(base64.decodestring(string))) def chopstring(message, key, n, funcref): """Splits 'message' into chops that are at most as long as n, converts these into integers, and calls funcref(integer, key, n) for each chop. Used by 'encrypt' and 'sign'. """ msglen = len(message) mbits = msglen * 8 nbits = int(math.floor(math.log(n, 2))) nbytes = nbits / 8 blocks = msglen / nbytes if msglen % nbytes > 0: blocks += 1 cypher = [] for bindex in range(blocks): offset = bindex * nbytes block = message[offset:offset+nbytes] value = bytes2int(block) cypher.append(funcref(value, key, n)) return picklechops(cypher) def gluechops(chops, key, n, funcref): """Glues chops back together into a string. calls funcref(integer, key, n) for each chop. Used by 'decrypt' and 'verify'. """ message = "" chops = unpicklechops(chops) for cpart in chops: mpart = funcref(cpart, key, n) message += int2bytes(mpart) return message def encrypt(message, key): """Encrypts a string 'message' with the public key 'key'""" return chopstring(message, key['e'], key['n'], encrypt_int) def sign(message, key): """Signs a string 'message' with the private key 'key'""" return chopstring(message, key['d'], key['p']*key['q'], decrypt_int) def decrypt(cypher, key): """Decrypts a cypher with the private key 'key'""" return gluechops(cypher, key['d'], key['p']*key['q'], decrypt_int) def verify(cypher, key): """Verifies a cypher with the public key 'key'""" return gluechops(cypher, key['e'], key['n'], encrypt_int) # Do doctest if we're not imported if __name__ == "__main__": import doctest doctest.testmod() __all__ = ["gen_pubpriv_keys", "encrypt", "decrypt", "sign", "verify"]