This repository has been archived on 2024-12-13. You can view files and clone it, but cannot push or open issues or pull requests.
PyBitmessage-2024-12-13/src/class_singleListener.py
mailchuck 231219a193 Improved logging
Fixes #118

- changed almost all "print" into logger
- threads have nicer names
- logger can have configuration in "logger.dat" in the same directory as
"keys.dat", and the logger will pick the one named "default" to replace
the "console" and "file" that are in PyBitmessage otherwise

Example file for logging to syslog:

[loggers]
keys = root,syslog

[logger_root]
level=NOTSET
handlers=syslog

[logger_syslog]
level=DEBUG
handlers=syslog
qualname=default

[handlers]
keys = syslog

[handler_syslog]
class = handlers.SysLogHandler
formatter = syslog
level = DEBUG
args=(('localhost', handlers.SYSLOG_UDP_PORT),
handlers.SysLogHandler.LOG_LOCAL7)

[formatters]
keys = syslog

[formatter_syslog]
format=%(asctime)s %(threadName)s %(filename)s@%(lineno)d %(message)s
datefmt=%b %d %H:%M:%S
2016-05-02 15:00:21 +02:00

126 lines
5.6 KiB
Python

import threading
import shared
import socket
from class_sendDataThread import *
from class_receiveDataThread import *
import helper_bootstrap
import errno
import re
# Only one singleListener thread will ever exist. It creates the
# receiveDataThread and sendDataThread for each incoming connection. Note
# that it cannot set the stream number because it is not known yet- the
# other node will have to tell us its stream number in a version message.
# If we don't care about their stream, we will close the connection
# (within the recversion function of the recieveData thread)
class singleListener(threading.Thread):
def __init__(self):
threading.Thread.__init__(self, name="singleListener")
def setup(self, selfInitiatedConnections):
self.selfInitiatedConnections = selfInitiatedConnections
def _createListenSocket(self, family):
HOST = '' # Symbolic name meaning all available interfaces
PORT = shared.config.getint('bitmessagesettings', 'port')
sock = socket.socket(family, socket.SOCK_STREAM)
if family == socket.AF_INET6:
# Make sure we can accept both IPv4 and IPv6 connections.
# This is the default on everything apart from Windows
sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 0)
# This option apparently avoids the TIME_WAIT state so that we can
# rebind faster
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind((HOST, PORT))
sock.listen(2)
return sock
def run(self):
# If there is a trusted peer then we don't want to accept
# incoming connections so we'll just abandon the thread
if shared.trustedPeer:
return
while shared.safeConfigGetBoolean('bitmessagesettings', 'dontconnect'):
time.sleep(1)
helper_bootstrap.dns()
# We typically don't want to accept incoming connections if the user is using a
# SOCKS proxy, unless they have configured otherwise. If they eventually select
# proxy 'none' or configure SOCKS listening then this will start listening for
# connections.
while shared.config.get('bitmessagesettings', 'socksproxytype')[0:5] == 'SOCKS' and not shared.config.getboolean('bitmessagesettings', 'sockslisten'):
time.sleep(5)
logger.info('Listening for incoming connections.')
# First try listening on an IPv6 socket. This should also be
# able to accept connections on IPv4. If that's not available
# we'll fall back to IPv4-only.
try:
sock = self._createListenSocket(socket.AF_INET6)
except socket.error, e:
if (isinstance(e.args, tuple) and
e.args[0] in (errno.EAFNOSUPPORT,
errno.EPFNOSUPPORT,
errno.ENOPROTOOPT)):
sock = self._createListenSocket(socket.AF_INET)
else:
raise
# regexp to match an IPv4-mapped IPv6 address
mappedAddressRegexp = re.compile(r'^::ffff:([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)$')
while True:
# We typically don't want to accept incoming connections if the user is using a
# SOCKS proxy, unless they have configured otherwise. If they eventually select
# proxy 'none' or configure SOCKS listening then this will start listening for
# connections.
while shared.config.get('bitmessagesettings', 'socksproxytype')[0:5] == 'SOCKS' and not shared.config.getboolean('bitmessagesettings', 'sockslisten'):
time.sleep(10)
while len(shared.connectedHostsList) > 220:
logger.info('We are connected to too many people. Not accepting further incoming connections for ten seconds.')
time.sleep(10)
while True:
socketObject, sockaddr = sock.accept()
(HOST, PORT) = sockaddr[0:2]
# If the address is an IPv4-mapped IPv6 address then
# convert it to just the IPv4 representation
md = mappedAddressRegexp.match(HOST)
if md != None:
HOST = md.group(1)
# The following code will, unfortunately, block an
# incoming connection if someone else on the same LAN
# is already connected because the two computers will
# share the same external IP. This is here to prevent
# connection flooding.
if HOST in shared.connectedHostsList:
socketObject.close()
logger.info('We are already connected to ' + str(HOST) + '. Ignoring connection.')
else:
break
someObjectsOfWhichThisRemoteNodeIsAlreadyAware = {} # This is not necessairly a complete list; we clear it from time to time to save memory.
sendDataThreadQueue = Queue.Queue() # Used to submit information to the send data thread for this connection.
socketObject.settimeout(20)
sd = sendDataThread(sendDataThreadQueue)
sd.setup(
socketObject, HOST, PORT, -1, someObjectsOfWhichThisRemoteNodeIsAlreadyAware)
sd.start()
rd = receiveDataThread()
rd.daemon = True # close the main program even if there are threads left
rd.setup(
socketObject, HOST, PORT, -1, someObjectsOfWhichThisRemoteNodeIsAlreadyAware, self.selfInitiatedConnections, sendDataThreadQueue)
rd.start()
logger.info('connected to ' + HOST + ' during INCOMING request.')