# LaTeX math to Unicode symbols translation table # for use with the translate() method of unicode objects. # Generated with ``write_unichar2tex.py`` from the data in # http://milde.users.sourceforge.net/LUCR/Math/ # Includes commands from: standard LaTeX, amssymb, amsmath uni2tex_table = { 0xa0: u'~', 0xa3: u'\\pounds ', 0xa5: u'\\yen ', 0xa7: u'\\S ', 0xac: u'\\neg ', 0xb1: u'\\pm ', 0xb6: u'\\P ', 0xd7: u'\\times ', 0xf0: u'\\eth ', 0xf7: u'\\div ', 0x131: u'\\imath ', 0x237: u'\\jmath ', 0x393: u'\\Gamma ', 0x394: u'\\Delta ', 0x398: u'\\Theta ', 0x39b: u'\\Lambda ', 0x39e: u'\\Xi ', 0x3a0: u'\\Pi ', 0x3a3: u'\\Sigma ', 0x3a5: u'\\Upsilon ', 0x3a6: u'\\Phi ', 0x3a8: u'\\Psi ', 0x3a9: u'\\Omega ', 0x3b1: u'\\alpha ', 0x3b2: u'\\beta ', 0x3b3: u'\\gamma ', 0x3b4: u'\\delta ', 0x3b5: u'\\varepsilon ', 0x3b6: u'\\zeta ', 0x3b7: u'\\eta ', 0x3b8: u'\\theta ', 0x3b9: u'\\iota ', 0x3ba: u'\\kappa ', 0x3bb: u'\\lambda ', 0x3bc: u'\\mu ', 0x3bd: u'\\nu ', 0x3be: u'\\xi ', 0x3c0: u'\\pi ', 0x3c1: u'\\rho ', 0x3c2: u'\\varsigma ', 0x3c3: u'\\sigma ', 0x3c4: u'\\tau ', 0x3c5: u'\\upsilon ', 0x3c6: u'\\varphi ', 0x3c7: u'\\chi ', 0x3c8: u'\\psi ', 0x3c9: u'\\omega ', 0x3d1: u'\\vartheta ', 0x3d5: u'\\phi ', 0x3d6: u'\\varpi ', 0x3dd: u'\\digamma ', 0x3f0: u'\\varkappa ', 0x3f1: u'\\varrho ', 0x3f5: u'\\epsilon ', 0x3f6: u'\\backepsilon ', 0x2001: u'\\quad ', 0x2003: u'\\quad ', 0x2006: u'\\, ', 0x2016: u'\\| ', 0x2020: u'\\dagger ', 0x2021: u'\\ddagger ', 0x2022: u'\\bullet ', 0x2026: u'\\ldots ', 0x2032: u'\\prime ', 0x2035: u'\\backprime ', 0x205f: u'\\: ', 0x2102: u'\\mathbb{C}', 0x210b: u'\\mathcal{H}', 0x210c: u'\\mathfrak{H}', 0x210d: u'\\mathbb{H}', 0x210f: u'\\hslash ', 0x2110: u'\\mathcal{I}', 0x2111: u'\\Im ', 0x2112: u'\\mathcal{L}', 0x2113: u'\\ell ', 0x2115: u'\\mathbb{N}', 0x2118: u'\\wp ', 0x2119: u'\\mathbb{P}', 0x211a: u'\\mathbb{Q}', 0x211b: u'\\mathcal{R}', 0x211c: u'\\Re ', 0x211d: u'\\mathbb{R}', 0x2124: u'\\mathbb{Z}', 0x2127: u'\\mho ', 0x2128: u'\\mathfrak{Z}', 0x212c: u'\\mathcal{B}', 0x212d: u'\\mathfrak{C}', 0x2130: u'\\mathcal{E}', 0x2131: u'\\mathcal{F}', 0x2132: u'\\Finv ', 0x2133: u'\\mathcal{M}', 0x2135: u'\\aleph ', 0x2136: u'\\beth ', 0x2137: u'\\gimel ', 0x2138: u'\\daleth ', 0x2190: u'\\leftarrow ', 0x2191: u'\\uparrow ', 0x2192: u'\\rightarrow ', 0x2193: u'\\downarrow ', 0x2194: u'\\leftrightarrow ', 0x2195: u'\\updownarrow ', 0x2196: u'\\nwarrow ', 0x2197: u'\\nearrow ', 0x2198: u'\\searrow ', 0x2199: u'\\swarrow ', 0x219a: u'\\nleftarrow ', 0x219b: u'\\nrightarrow ', 0x219e: u'\\twoheadleftarrow ', 0x21a0: u'\\twoheadrightarrow ', 0x21a2: u'\\leftarrowtail ', 0x21a3: u'\\rightarrowtail ', 0x21a6: u'\\mapsto ', 0x21a9: u'\\hookleftarrow ', 0x21aa: u'\\hookrightarrow ', 0x21ab: u'\\looparrowleft ', 0x21ac: u'\\looparrowright ', 0x21ad: u'\\leftrightsquigarrow ', 0x21ae: u'\\nleftrightarrow ', 0x21b0: u'\\Lsh ', 0x21b1: u'\\Rsh ', 0x21b6: u'\\curvearrowleft ', 0x21b7: u'\\curvearrowright ', 0x21ba: u'\\circlearrowleft ', 0x21bb: u'\\circlearrowright ', 0x21bc: u'\\leftharpoonup ', 0x21bd: u'\\leftharpoondown ', 0x21be: u'\\upharpoonright ', 0x21bf: u'\\upharpoonleft ', 0x21c0: u'\\rightharpoonup ', 0x21c1: u'\\rightharpoondown ', 0x21c2: u'\\downharpoonright ', 0x21c3: u'\\downharpoonleft ', 0x21c4: u'\\rightleftarrows ', 0x21c6: u'\\leftrightarrows ', 0x21c7: u'\\leftleftarrows ', 0x21c8: u'\\upuparrows ', 0x21c9: u'\\rightrightarrows ', 0x21ca: u'\\downdownarrows ', 0x21cb: u'\\leftrightharpoons ', 0x21cc: u'\\rightleftharpoons ', 0x21cd: u'\\nLeftarrow ', 0x21ce: u'\\nLeftrightarrow ', 0x21cf: u'\\nRightarrow ', 0x21d0: u'\\Leftarrow ', 0x21d1: u'\\Uparrow ', 0x21d2: u'\\Rightarrow ', 0x21d3: u'\\Downarrow ', 0x21d4: u'\\Leftrightarrow ', 0x21d5: u'\\Updownarrow ', 0x21da: u'\\Lleftarrow ', 0x21db: u'\\Rrightarrow ', 0x21dd: u'\\rightsquigarrow ', 0x21e0: u'\\dashleftarrow ', 0x21e2: u'\\dashrightarrow ', 0x2200: u'\\forall ', 0x2201: u'\\complement ', 0x2202: u'\\partial ', 0x2203: u'\\exists ', 0x2204: u'\\nexists ', 0x2205: u'\\emptyset ', 0x2207: u'\\nabla ', 0x2208: u'\\in ', 0x2209: u'\\notin ', 0x220b: u'\\ni ', 0x220f: u'\\prod ', 0x2210: u'\\coprod ', 0x2211: u'\\sum ', 0x2212: u'-', 0x2213: u'\\mp ', 0x2214: u'\\dotplus ', 0x2215: u'\\slash ', 0x2216: u'\\smallsetminus ', 0x2217: u'\\ast ', 0x2218: u'\\circ ', 0x2219: u'\\bullet ', 0x221a: u'\\surd ', 0x221b: u'\\sqrt[3] ', 0x221c: u'\\sqrt[4] ', 0x221d: u'\\propto ', 0x221e: u'\\infty ', 0x2220: u'\\angle ', 0x2221: u'\\measuredangle ', 0x2222: u'\\sphericalangle ', 0x2223: u'\\mid ', 0x2224: u'\\nmid ', 0x2225: u'\\parallel ', 0x2226: u'\\nparallel ', 0x2227: u'\\wedge ', 0x2228: u'\\vee ', 0x2229: u'\\cap ', 0x222a: u'\\cup ', 0x222b: u'\\int ', 0x222c: u'\\iint ', 0x222d: u'\\iiint ', 0x222e: u'\\oint ', 0x2234: u'\\therefore ', 0x2235: u'\\because ', 0x2236: u':', 0x223c: u'\\sim ', 0x223d: u'\\backsim ', 0x2240: u'\\wr ', 0x2241: u'\\nsim ', 0x2242: u'\\eqsim ', 0x2243: u'\\simeq ', 0x2245: u'\\cong ', 0x2247: u'\\ncong ', 0x2248: u'\\approx ', 0x224a: u'\\approxeq ', 0x224d: u'\\asymp ', 0x224e: u'\\Bumpeq ', 0x224f: u'\\bumpeq ', 0x2250: u'\\doteq ', 0x2251: u'\\Doteq ', 0x2252: u'\\fallingdotseq ', 0x2253: u'\\risingdotseq ', 0x2256: u'\\eqcirc ', 0x2257: u'\\circeq ', 0x225c: u'\\triangleq ', 0x2260: u'\\neq ', 0x2261: u'\\equiv ', 0x2264: u'\\leq ', 0x2265: u'\\geq ', 0x2266: u'\\leqq ', 0x2267: u'\\geqq ', 0x2268: u'\\lneqq ', 0x2269: u'\\gneqq ', 0x226a: u'\\ll ', 0x226b: u'\\gg ', 0x226c: u'\\between ', 0x226e: u'\\nless ', 0x226f: u'\\ngtr ', 0x2270: u'\\nleq ', 0x2271: u'\\ngeq ', 0x2272: u'\\lesssim ', 0x2273: u'\\gtrsim ', 0x2276: u'\\lessgtr ', 0x2277: u'\\gtrless ', 0x227a: u'\\prec ', 0x227b: u'\\succ ', 0x227c: u'\\preccurlyeq ', 0x227d: u'\\succcurlyeq ', 0x227e: u'\\precsim ', 0x227f: u'\\succsim ', 0x2280: u'\\nprec ', 0x2281: u'\\nsucc ', 0x2282: u'\\subset ', 0x2283: u'\\supset ', 0x2286: u'\\subseteq ', 0x2287: u'\\supseteq ', 0x2288: u'\\nsubseteq ', 0x2289: u'\\nsupseteq ', 0x228a: u'\\subsetneq ', 0x228b: u'\\supsetneq ', 0x228e: u'\\uplus ', 0x228f: u'\\sqsubset ', 0x2290: u'\\sqsupset ', 0x2291: u'\\sqsubseteq ', 0x2292: u'\\sqsupseteq ', 0x2293: u'\\sqcap ', 0x2294: u'\\sqcup ', 0x2295: u'\\oplus ', 0x2296: u'\\ominus ', 0x2297: u'\\otimes ', 0x2298: u'\\oslash ', 0x2299: u'\\odot ', 0x229a: u'\\circledcirc ', 0x229b: u'\\circledast ', 0x229d: u'\\circleddash ', 0x229e: u'\\boxplus ', 0x229f: u'\\boxminus ', 0x22a0: u'\\boxtimes ', 0x22a1: u'\\boxdot ', 0x22a2: u'\\vdash ', 0x22a3: u'\\dashv ', 0x22a4: u'\\top ', 0x22a5: u'\\bot ', 0x22a7: u'\\models ', 0x22a8: u'\\vDash ', 0x22a9: u'\\Vdash ', 0x22aa: u'\\Vvdash ', 0x22ac: u'\\nvdash ', 0x22ad: u'\\nvDash ', 0x22ae: u'\\nVdash ', 0x22af: u'\\nVDash ', 0x22b2: u'\\vartriangleleft ', 0x22b3: u'\\vartriangleright ', 0x22b4: u'\\trianglelefteq ', 0x22b5: u'\\trianglerighteq ', 0x22b8: u'\\multimap ', 0x22ba: u'\\intercal ', 0x22bb: u'\\veebar ', 0x22bc: u'\\barwedge ', 0x22c0: u'\\bigwedge ', 0x22c1: u'\\bigvee ', 0x22c2: u'\\bigcap ', 0x22c3: u'\\bigcup ', 0x22c4: u'\\diamond ', 0x22c5: u'\\cdot ', 0x22c6: u'\\star ', 0x22c7: u'\\divideontimes ', 0x22c8: u'\\bowtie ', 0x22c9: u'\\ltimes ', 0x22ca: u'\\rtimes ', 0x22cb: u'\\leftthreetimes ', 0x22cc: u'\\rightthreetimes ', 0x22cd: u'\\backsimeq ', 0x22ce: u'\\curlyvee ', 0x22cf: u'\\curlywedge ', 0x22d0: u'\\Subset ', 0x22d1: u'\\Supset ', 0x22d2: u'\\Cap ', 0x22d3: u'\\Cup ', 0x22d4: u'\\pitchfork ', 0x22d6: u'\\lessdot ', 0x22d7: u'\\gtrdot ', 0x22d8: u'\\lll ', 0x22d9: u'\\ggg ', 0x22da: u'\\lesseqgtr ', 0x22db: u'\\gtreqless ', 0x22de: u'\\curlyeqprec ', 0x22df: u'\\curlyeqsucc ', 0x22e0: u'\\npreceq ', 0x22e1: u'\\nsucceq ', 0x22e6: u'\\lnsim ', 0x22e7: u'\\gnsim ', 0x22e8: u'\\precnsim ', 0x22e9: u'\\succnsim ', 0x22ea: u'\\ntriangleleft ', 0x22eb: u'\\ntriangleright ', 0x22ec: u'\\ntrianglelefteq ', 0x22ed: u'\\ntrianglerighteq ', 0x22ee: u'\\vdots ', 0x22ef: u'\\cdots ', 0x22f1: u'\\ddots ', 0x2308: u'\\lceil ', 0x2309: u'\\rceil ', 0x230a: u'\\lfloor ', 0x230b: u'\\rfloor ', 0x231c: u'\\ulcorner ', 0x231d: u'\\urcorner ', 0x231e: u'\\llcorner ', 0x231f: u'\\lrcorner ', 0x2322: u'\\frown ', 0x2323: u'\\smile ', 0x23aa: u'\\bracevert ', 0x23b0: u'\\lmoustache ', 0x23b1: u'\\rmoustache ', 0x23d0: u'\\arrowvert ', 0x23de: u'\\overbrace ', 0x23df: u'\\underbrace ', 0x24c7: u'\\circledR ', 0x24c8: u'\\circledS ', 0x25b2: u'\\blacktriangle ', 0x25b3: u'\\bigtriangleup ', 0x25b7: u'\\triangleright ', 0x25bc: u'\\blacktriangledown ', 0x25bd: u'\\bigtriangledown ', 0x25c1: u'\\triangleleft ', 0x25c7: u'\\Diamond ', 0x25ca: u'\\lozenge ', 0x25ef: u'\\bigcirc ', 0x25fb: u'\\square ', 0x25fc: u'\\blacksquare ', 0x2605: u'\\bigstar ', 0x2660: u'\\spadesuit ', 0x2661: u'\\heartsuit ', 0x2662: u'\\diamondsuit ', 0x2663: u'\\clubsuit ', 0x266d: u'\\flat ', 0x266e: u'\\natural ', 0x266f: u'\\sharp ', 0x2713: u'\\checkmark ', 0x2720: u'\\maltese ', 0x27c2: u'\\perp ', 0x27cb: u'\\diagup ', 0x27cd: u'\\diagdown ', 0x27e8: u'\\langle ', 0x27e9: u'\\rangle ', 0x27ee: u'\\lgroup ', 0x27ef: u'\\rgroup ', 0x27f5: u'\\longleftarrow ', 0x27f6: u'\\longrightarrow ', 0x27f7: u'\\longleftrightarrow ', 0x27f8: u'\\Longleftarrow ', 0x27f9: u'\\Longrightarrow ', 0x27fa: u'\\Longleftrightarrow ', 0x27fc: u'\\longmapsto ', 0x29eb: u'\\blacklozenge ', 0x29f5: u'\\setminus ', 0x2a00: u'\\bigodot ', 0x2a01: u'\\bigoplus ', 0x2a02: u'\\bigotimes ', 0x2a04: u'\\biguplus ', 0x2a06: u'\\bigsqcup ', 0x2a0c: u'\\iiiint ', 0x2a3f: u'\\amalg ', 0x2a5e: u'\\doublebarwedge ', 0x2a7d: u'\\leqslant ', 0x2a7e: u'\\geqslant ', 0x2a85: u'\\lessapprox ', 0x2a86: u'\\gtrapprox ', 0x2a87: u'\\lneq ', 0x2a88: u'\\gneq ', 0x2a89: u'\\lnapprox ', 0x2a8a: u'\\gnapprox ', 0x2a8b: u'\\lesseqqgtr ', 0x2a8c: u'\\gtreqqless ', 0x2a95: u'\\eqslantless ', 0x2a96: u'\\eqslantgtr ', 0x2aaf: u'\\preceq ', 0x2ab0: u'\\succeq ', 0x2ab5: u'\\precneqq ', 0x2ab6: u'\\succneqq ', 0x2ab7: u'\\precapprox ', 0x2ab8: u'\\succapprox ', 0x2ab9: u'\\precnapprox ', 0x2aba: u'\\succnapprox ', 0x2ac5: u'\\subseteqq ', 0x2ac6: u'\\supseteqq ', 0x2acb: u'\\subsetneqq ', 0x2acc: u'\\supsetneqq ', 0x2b1c: u'\\Box ', 0x1d400: u'\\mathbf{A}', 0x1d401: u'\\mathbf{B}', 0x1d402: u'\\mathbf{C}', 0x1d403: u'\\mathbf{D}', 0x1d404: u'\\mathbf{E}', 0x1d405: u'\\mathbf{F}', 0x1d406: u'\\mathbf{G}', 0x1d407: u'\\mathbf{H}', 0x1d408: u'\\mathbf{I}', 0x1d409: u'\\mathbf{J}', 0x1d40a: u'\\mathbf{K}', 0x1d40b: u'\\mathbf{L}', 0x1d40c: u'\\mathbf{M}', 0x1d40d: u'\\mathbf{N}', 0x1d40e: u'\\mathbf{O}', 0x1d40f: u'\\mathbf{P}', 0x1d410: u'\\mathbf{Q}', 0x1d411: u'\\mathbf{R}', 0x1d412: u'\\mathbf{S}', 0x1d413: u'\\mathbf{T}', 0x1d414: u'\\mathbf{U}', 0x1d415: u'\\mathbf{V}', 0x1d416: u'\\mathbf{W}', 0x1d417: u'\\mathbf{X}', 0x1d418: u'\\mathbf{Y}', 0x1d419: u'\\mathbf{Z}', 0x1d41a: u'\\mathbf{a}', 0x1d41b: u'\\mathbf{b}', 0x1d41c: u'\\mathbf{c}', 0x1d41d: u'\\mathbf{d}', 0x1d41e: u'\\mathbf{e}', 0x1d41f: u'\\mathbf{f}', 0x1d420: u'\\mathbf{g}', 0x1d421: u'\\mathbf{h}', 0x1d422: u'\\mathbf{i}', 0x1d423: u'\\mathbf{j}', 0x1d424: u'\\mathbf{k}', 0x1d425: u'\\mathbf{l}', 0x1d426: u'\\mathbf{m}', 0x1d427: u'\\mathbf{n}', 0x1d428: u'\\mathbf{o}', 0x1d429: u'\\mathbf{p}', 0x1d42a: u'\\mathbf{q}', 0x1d42b: u'\\mathbf{r}', 0x1d42c: u'\\mathbf{s}', 0x1d42d: u'\\mathbf{t}', 0x1d42e: u'\\mathbf{u}', 0x1d42f: u'\\mathbf{v}', 0x1d430: u'\\mathbf{w}', 0x1d431: u'\\mathbf{x}', 0x1d432: u'\\mathbf{y}', 0x1d433: u'\\mathbf{z}', 0x1d434: u'A', 0x1d435: u'B', 0x1d436: u'C', 0x1d437: u'D', 0x1d438: u'E', 0x1d439: u'F', 0x1d43a: u'G', 0x1d43b: u'H', 0x1d43c: u'I', 0x1d43d: u'J', 0x1d43e: u'K', 0x1d43f: u'L', 0x1d440: u'M', 0x1d441: u'N', 0x1d442: u'O', 0x1d443: u'P', 0x1d444: u'Q', 0x1d445: u'R', 0x1d446: u'S', 0x1d447: u'T', 0x1d448: u'U', 0x1d449: u'V', 0x1d44a: u'W', 0x1d44b: u'X', 0x1d44c: u'Y', 0x1d44d: u'Z', 0x1d44e: u'a', 0x1d44f: u'b', 0x1d450: u'c', 0x1d451: u'd', 0x1d452: u'e', 0x1d453: u'f', 0x1d454: u'g', 0x1d456: u'i', 0x1d457: u'j', 0x1d458: u'k', 0x1d459: u'l', 0x1d45a: u'm', 0x1d45b: u'n', 0x1d45c: u'o', 0x1d45d: u'p', 0x1d45e: u'q', 0x1d45f: u'r', 0x1d460: u's', 0x1d461: u't', 0x1d462: u'u', 0x1d463: u'v', 0x1d464: u'w', 0x1d465: u'x', 0x1d466: u'y', 0x1d467: u'z', 0x1d49c: u'\\mathcal{A}', 0x1d49e: u'\\mathcal{C}', 0x1d49f: u'\\mathcal{D}', 0x1d4a2: u'\\mathcal{G}', 0x1d4a5: u'\\mathcal{J}', 0x1d4a6: u'\\mathcal{K}', 0x1d4a9: u'\\mathcal{N}', 0x1d4aa: u'\\mathcal{O}', 0x1d4ab: u'\\mathcal{P}', 0x1d4ac: u'\\mathcal{Q}', 0x1d4ae: u'\\mathcal{S}', 0x1d4af: u'\\mathcal{T}', 0x1d4b0: u'\\mathcal{U}', 0x1d4b1: u'\\mathcal{V}', 0x1d4b2: u'\\mathcal{W}', 0x1d4b3: u'\\mathcal{X}', 0x1d4b4: u'\\mathcal{Y}', 0x1d4b5: u'\\mathcal{Z}', 0x1d504: u'\\mathfrak{A}', 0x1d505: u'\\mathfrak{B}', 0x1d507: u'\\mathfrak{D}', 0x1d508: u'\\mathfrak{E}', 0x1d509: u'\\mathfrak{F}', 0x1d50a: u'\\mathfrak{G}', 0x1d50d: u'\\mathfrak{J}', 0x1d50e: u'\\mathfrak{K}', 0x1d50f: u'\\mathfrak{L}', 0x1d510: u'\\mathfrak{M}', 0x1d511: u'\\mathfrak{N}', 0x1d512: u'\\mathfrak{O}', 0x1d513: u'\\mathfrak{P}', 0x1d514: u'\\mathfrak{Q}', 0x1d516: u'\\mathfrak{S}', 0x1d517: u'\\mathfrak{T}', 0x1d518: u'\\mathfrak{U}', 0x1d519: u'\\mathfrak{V}', 0x1d51a: u'\\mathfrak{W}', 0x1d51b: u'\\mathfrak{X}', 0x1d51c: u'\\mathfrak{Y}', 0x1d51e: u'\\mathfrak{a}', 0x1d51f: u'\\mathfrak{b}', 0x1d520: u'\\mathfrak{c}', 0x1d521: u'\\mathfrak{d}', 0x1d522: u'\\mathfrak{e}', 0x1d523: u'\\mathfrak{f}', 0x1d524: u'\\mathfrak{g}', 0x1d525: u'\\mathfrak{h}', 0x1d526: u'\\mathfrak{i}', 0x1d527: u'\\mathfrak{j}', 0x1d528: u'\\mathfrak{k}', 0x1d529: u'\\mathfrak{l}', 0x1d52a: u'\\mathfrak{m}', 0x1d52b: u'\\mathfrak{n}', 0x1d52c: u'\\mathfrak{o}', 0x1d52d: u'\\mathfrak{p}', 0x1d52e: u'\\mathfrak{q}', 0x1d52f: u'\\mathfrak{r}', 0x1d530: u'\\mathfrak{s}', 0x1d531: u'\\mathfrak{t}', 0x1d532: u'\\mathfrak{u}', 0x1d533: u'\\mathfrak{v}', 0x1d534: u'\\mathfrak{w}', 0x1d535: u'\\mathfrak{x}', 0x1d536: u'\\mathfrak{y}', 0x1d537: u'\\mathfrak{z}', 0x1d538: u'\\mathbb{A}', 0x1d539: u'\\mathbb{B}', 0x1d53b: u'\\mathbb{D}', 0x1d53c: u'\\mathbb{E}', 0x1d53d: u'\\mathbb{F}', 0x1d53e: u'\\mathbb{G}', 0x1d540: u'\\mathbb{I}', 0x1d541: u'\\mathbb{J}', 0x1d542: u'\\mathbb{K}', 0x1d543: u'\\mathbb{L}', 0x1d544: u'\\mathbb{M}', 0x1d546: u'\\mathbb{O}', 0x1d54a: u'\\mathbb{S}', 0x1d54b: u'\\mathbb{T}', 0x1d54c: u'\\mathbb{U}', 0x1d54d: u'\\mathbb{V}', 0x1d54e: u'\\mathbb{W}', 0x1d54f: u'\\mathbb{X}', 0x1d550: u'\\mathbb{Y}', 0x1d55c: u'\\Bbbk ', 0x1d5a0: u'\\mathsf{A}', 0x1d5a1: u'\\mathsf{B}', 0x1d5a2: u'\\mathsf{C}', 0x1d5a3: u'\\mathsf{D}', 0x1d5a4: u'\\mathsf{E}', 0x1d5a5: u'\\mathsf{F}', 0x1d5a6: u'\\mathsf{G}', 0x1d5a7: u'\\mathsf{H}', 0x1d5a8: u'\\mathsf{I}', 0x1d5a9: u'\\mathsf{J}', 0x1d5aa: u'\\mathsf{K}', 0x1d5ab: u'\\mathsf{L}', 0x1d5ac: u'\\mathsf{M}', 0x1d5ad: u'\\mathsf{N}', 0x1d5ae: u'\\mathsf{O}', 0x1d5af: u'\\mathsf{P}', 0x1d5b0: u'\\mathsf{Q}', 0x1d5b1: u'\\mathsf{R}', 0x1d5b2: u'\\mathsf{S}', 0x1d5b3: u'\\mathsf{T}', 0x1d5b4: u'\\mathsf{U}', 0x1d5b5: u'\\mathsf{V}', 0x1d5b6: u'\\mathsf{W}', 0x1d5b7: u'\\mathsf{X}', 0x1d5b8: u'\\mathsf{Y}', 0x1d5b9: u'\\mathsf{Z}', 0x1d5ba: u'\\mathsf{a}', 0x1d5bb: u'\\mathsf{b}', 0x1d5bc: u'\\mathsf{c}', 0x1d5bd: u'\\mathsf{d}', 0x1d5be: u'\\mathsf{e}', 0x1d5bf: u'\\mathsf{f}', 0x1d5c0: u'\\mathsf{g}', 0x1d5c1: u'\\mathsf{h}', 0x1d5c2: u'\\mathsf{i}', 0x1d5c3: u'\\mathsf{j}', 0x1d5c4: u'\\mathsf{k}', 0x1d5c5: u'\\mathsf{l}', 0x1d5c6: u'\\mathsf{m}', 0x1d5c7: u'\\mathsf{n}', 0x1d5c8: u'\\mathsf{o}', 0x1d5c9: u'\\mathsf{p}', 0x1d5ca: u'\\mathsf{q}', 0x1d5cb: u'\\mathsf{r}', 0x1d5cc: u'\\mathsf{s}', 0x1d5cd: u'\\mathsf{t}', 0x1d5ce: u'\\mathsf{u}', 0x1d5cf: u'\\mathsf{v}', 0x1d5d0: u'\\mathsf{w}', 0x1d5d1: u'\\mathsf{x}', 0x1d5d2: u'\\mathsf{y}', 0x1d5d3: u'\\mathsf{z}', 0x1d670: u'\\mathtt{A}', 0x1d671: u'\\mathtt{B}', 0x1d672: u'\\mathtt{C}', 0x1d673: u'\\mathtt{D}', 0x1d674: u'\\mathtt{E}', 0x1d675: u'\\mathtt{F}', 0x1d676: u'\\mathtt{G}', 0x1d677: u'\\mathtt{H}', 0x1d678: u'\\mathtt{I}', 0x1d679: u'\\mathtt{J}', 0x1d67a: u'\\mathtt{K}', 0x1d67b: u'\\mathtt{L}', 0x1d67c: u'\\mathtt{M}', 0x1d67d: u'\\mathtt{N}', 0x1d67e: u'\\mathtt{O}', 0x1d67f: u'\\mathtt{P}', 0x1d680: u'\\mathtt{Q}', 0x1d681: u'\\mathtt{R}', 0x1d682: u'\\mathtt{S}', 0x1d683: u'\\mathtt{T}', 0x1d684: u'\\mathtt{U}', 0x1d685: u'\\mathtt{V}', 0x1d686: u'\\mathtt{W}', 0x1d687: u'\\mathtt{X}', 0x1d688: u'\\mathtt{Y}', 0x1d689: u'\\mathtt{Z}', 0x1d68a: u'\\mathtt{a}', 0x1d68b: u'\\mathtt{b}', 0x1d68c: u'\\mathtt{c}', 0x1d68d: u'\\mathtt{d}', 0x1d68e: u'\\mathtt{e}', 0x1d68f: u'\\mathtt{f}', 0x1d690: u'\\mathtt{g}', 0x1d691: u'\\mathtt{h}', 0x1d692: u'\\mathtt{i}', 0x1d693: u'\\mathtt{j}', 0x1d694: u'\\mathtt{k}', 0x1d695: u'\\mathtt{l}', 0x1d696: u'\\mathtt{m}', 0x1d697: u'\\mathtt{n}', 0x1d698: u'\\mathtt{o}', 0x1d699: u'\\mathtt{p}', 0x1d69a: u'\\mathtt{q}', 0x1d69b: u'\\mathtt{r}', 0x1d69c: u'\\mathtt{s}', 0x1d69d: u'\\mathtt{t}', 0x1d69e: u'\\mathtt{u}', 0x1d69f: u'\\mathtt{v}', 0x1d6a0: u'\\mathtt{w}', 0x1d6a1: u'\\mathtt{x}', 0x1d6a2: u'\\mathtt{y}', 0x1d6a3: u'\\mathtt{z}', 0x1d6a4: u'\\imath ', 0x1d6a5: u'\\jmath ', 0x1d6aa: u'\\mathbf{\\Gamma}', 0x1d6ab: u'\\mathbf{\\Delta}', 0x1d6af: u'\\mathbf{\\Theta}', 0x1d6b2: u'\\mathbf{\\Lambda}', 0x1d6b5: u'\\mathbf{\\Xi}', 0x1d6b7: u'\\mathbf{\\Pi}', 0x1d6ba: u'\\mathbf{\\Sigma}', 0x1d6bc: u'\\mathbf{\\Upsilon}', 0x1d6bd: u'\\mathbf{\\Phi}', 0x1d6bf: u'\\mathbf{\\Psi}', 0x1d6c0: u'\\mathbf{\\Omega}', 0x1d6e4: u'\\mathit{\\Gamma}', 0x1d6e5: u'\\mathit{\\Delta}', 0x1d6e9: u'\\mathit{\\Theta}', 0x1d6ec: u'\\mathit{\\Lambda}', 0x1d6ef: u'\\mathit{\\Xi}', 0x1d6f1: u'\\mathit{\\Pi}', 0x1d6f4: u'\\mathit{\\Sigma}', 0x1d6f6: u'\\mathit{\\Upsilon}', 0x1d6f7: u'\\mathit{\\Phi}', 0x1d6f9: u'\\mathit{\\Psi}', 0x1d6fa: u'\\mathit{\\Omega}', 0x1d6fc: u'\\alpha ', 0x1d6fd: u'\\beta ', 0x1d6fe: u'\\gamma ', 0x1d6ff: u'\\delta ', 0x1d700: u'\\varepsilon ', 0x1d701: u'\\zeta ', 0x1d702: u'\\eta ', 0x1d703: u'\\theta ', 0x1d704: u'\\iota ', 0x1d705: u'\\kappa ', 0x1d706: u'\\lambda ', 0x1d707: u'\\mu ', 0x1d708: u'\\nu ', 0x1d709: u'\\xi ', 0x1d70b: u'\\pi ', 0x1d70c: u'\\rho ', 0x1d70d: u'\\varsigma ', 0x1d70e: u'\\sigma ', 0x1d70f: u'\\tau ', 0x1d710: u'\\upsilon ', 0x1d711: u'\\varphi ', 0x1d712: u'\\chi ', 0x1d713: u'\\psi ', 0x1d714: u'\\omega ', 0x1d715: u'\\partial ', 0x1d716: u'\\epsilon ', 0x1d717: u'\\vartheta ', 0x1d718: u'\\varkappa ', 0x1d719: u'\\phi ', 0x1d71a: u'\\varrho ', 0x1d71b: u'\\varpi ', 0x1d7ce: u'\\mathbf{0}', 0x1d7cf: u'\\mathbf{1}', 0x1d7d0: u'\\mathbf{2}', 0x1d7d1: u'\\mathbf{3}', 0x1d7d2: u'\\mathbf{4}', 0x1d7d3: u'\\mathbf{5}', 0x1d7d4: u'\\mathbf{6}', 0x1d7d5: u'\\mathbf{7}', 0x1d7d6: u'\\mathbf{8}', 0x1d7d7: u'\\mathbf{9}', 0x1d7e2: u'\\mathsf{0}', 0x1d7e3: u'\\mathsf{1}', 0x1d7e4: u'\\mathsf{2}', 0x1d7e5: u'\\mathsf{3}', 0x1d7e6: u'\\mathsf{4}', 0x1d7e7: u'\\mathsf{5}', 0x1d7e8: u'\\mathsf{6}', 0x1d7e9: u'\\mathsf{7}', 0x1d7ea: u'\\mathsf{8}', 0x1d7eb: u'\\mathsf{9}', 0x1d7f6: u'\\mathtt{0}', 0x1d7f7: u'\\mathtt{1}', 0x1d7f8: u'\\mathtt{2}', 0x1d7f9: u'\\mathtt{3}', 0x1d7fa: u'\\mathtt{4}', 0x1d7fb: u'\\mathtt{5}', 0x1d7fc: u'\\mathtt{6}', 0x1d7fd: u'\\mathtt{7}', 0x1d7fe: u'\\mathtt{8}', 0x1d7ff: u'\\mathtt{9}', }