eccrypto/index.js

247 lines
7.9 KiB
JavaScript

/**
* Node.js eccrypto implementation.
* @module eccrypto
*/
"use strict";
const EC_GROUP_ORDER = Buffer.from('fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141', 'hex');
const ZERO32 = Buffer.alloc(32, 0);
var promise = typeof Promise === "undefined" ?
require("es6-promise").Promise :
Promise;
var crypto = require("crypto");
// try to use secp256k1, fallback to browser implementation
try {
var secp256k1 = require("secp256k1");
var ecdh = require("./build/Release/ecdh");
} catch (e) {
if (process.env.ECCRYPTO_NO_FALLBACK) {
throw e;
} else {
console.error(e);
console.error('Reverting to browser version');
return (module.exports = require("./browser"));
}
}
function isScalar (x) {
return Buffer.isBuffer(x) && x.length === 32;
}
function isValidPrivateKey(privateKey) {
if (!isScalar(privateKey))
{
return false;
}
return privateKey.compare(ZERO32) > 0 && // > 0
privateKey.compare(EC_GROUP_ORDER) < 0; // < G
}
function assert(condition, message) {
if (!condition) {
throw new Error(message || "Assertion failed");
}
}
function sha512(msg) {
return crypto.createHash("sha512").update(msg).digest();
}
function aes256CbcEncrypt(iv, key, plaintext) {
var cipher = crypto.createCipheriv("aes-256-cbc", key, iv);
var firstChunk = cipher.update(plaintext);
var secondChunk = cipher.final();
return Buffer.concat([firstChunk, secondChunk]);
}
function aes256CbcDecrypt(iv, key, ciphertext) {
var cipher = crypto.createDecipheriv("aes-256-cbc", key, iv);
var firstChunk = cipher.update(ciphertext);
var secondChunk = cipher.final();
return Buffer.concat([firstChunk, secondChunk]);
}
function hmacSha256(key, msg) {
return crypto.createHmac("sha256", key).update(msg).digest();
}
// Compare two buffers in constant time to prevent timing attacks.
function equalConstTime(b1, b2) {
if (b1.length !== b2.length) {
return false;
}
var res = 0;
for (var i = 0; i < b1.length; i++) {
res |= b1[i] ^ b2[i]; // jshint ignore:line
}
return res === 0;
}
function pad32(msg){
var buf;
if (msg.length < 32) {
buf = Buffer.alloc(32);
buf.fill(0);
msg.copy(buf, 32 - msg.length);
return buf;
} else {
return msg;
}
}
/**
* Compute the public key for a given private key.
* @param {Buffer} privateKey - A 32-byte private key
* @return {Buffer} A 65-byte public key.
* @function
*/
var getPublic = exports.getPublic = function(privateKey) {
assert(privateKey.length === 32, "Bad private key");
assert(isValidPrivateKey(privateKey), "Bad private key");
// See https://github.com/wanderer/secp256k1-node/issues/46
var compressed = secp256k1.publicKeyCreate(privateKey);
return secp256k1.publicKeyConvert(compressed, false);
};
/**
* Get compressed version of public key.
*/
var getPublicCompressed = exports.getPublicCompressed = function(privateKey) { // jshint ignore:line
assert(privateKey.length === 32, "Bad private key");
assert(isValidPrivateKey(privateKey), "Bad private key");
// See https://github.com/wanderer/secp256k1-node/issues/46
return secp256k1.publicKeyCreate(privateKey);
};
/**
* Create an ECDSA signature.
* @param {Buffer} privateKey - A 32-byte private key
* @param {Buffer} msg - The message being signed
* @return {Promise.<Buffer>} A promise that resolves with the
* signature and rejects on bad key or message.
*/
exports.sign = function(privateKey, msg) {
return new promise(function(resolve) {
assert(privateKey.length === 32, "Bad private key");
assert(isValidPrivateKey(privateKey), "Bad private key");
assert(msg.length > 0, "Message should not be empty");
assert(msg.length <= 32, "Message is too long");
msg = pad32(msg);
var sig = secp256k1.signSync(msg, privateKey).signature;
resolve(secp256k1.signatureExport(sig));
});
};
/**
* Verify an ECDSA signature.
* @param {Buffer} publicKey - A 65-byte public key
* @param {Buffer} msg - The message being verified
* @param {Buffer} sig - The signature
* @return {Promise.<null>} A promise that resolves on correct signature
* and rejects on bad key or signature.
*/
exports.verify = function(publicKey, msg, sig) {
return new promise(function(resolve, reject) {
assert(msg.length > 0, "Message should not be empty");
assert(msg.length <= 32, "Message is too long");
msg = pad32(msg);
sig = secp256k1.signatureImport(sig);
if (secp256k1.verifySync(msg, sig, publicKey)) {
resolve(null);
} else {
reject(new Error("Bad signature"));
}
});
};
/**
* Derive shared secret for given private and public keys.
* @param {Buffer} privateKeyA - Sender's private key (32 bytes)
* @param {Buffer} publicKeyB - Recipient's public key (65 bytes)
* @return {Promise.<Buffer>} A promise that resolves with the derived
* shared secret (Px, 32 bytes) and rejects on bad key.
*/
var derive = exports.derive = function(privateKeyA, publicKeyB) {
return new promise(function(resolve) {
assert(privateKeyA.length === 32, "Bad private key");
assert(isValidPrivateKey(privateKeyA), "Bad private key");
resolve(ecdh.derive(privateKeyA, publicKeyB));
});
};
/**
* Input/output structure for ECIES operations.
* @typedef {Object} Ecies
* @property {Buffer} iv - Initialization vector (16 bytes)
* @property {Buffer} ephemPublicKey - Ephemeral public key (65 bytes)
* @property {Buffer} ciphertext - The result of encryption (variable size)
* @property {Buffer} mac - Message authentication code (32 bytes)
*/
/**
* Encrypt message for given recepient's public key.
* @param {Buffer} publicKeyTo - Recipient's public key (65 bytes)
* @param {Buffer} msg - The message being encrypted
* @param {?{?iv: Buffer, ?ephemPrivateKey: Buffer}} opts - You may also
* specify initialization vector (16 bytes) and ephemeral private key
* (32 bytes) to get deterministic results.
* @return {Promise.<Ecies>} - A promise that resolves with the ECIES
* structure on successful encryption and rejects on failure.
*/
exports.encrypt = function(publicKeyTo, msg, opts) {
opts = opts || {};
// Tmp variable to save context from flat promises;
var ephemPublicKey;
return new promise(function(resolve) {
var ephemPrivateKey = opts.ephemPrivateKey || crypto.randomBytes(32);
// There is a very unlikely possibility that it is not a valid key
while(!isValidPrivateKey(ephemPrivateKey))
{
ephemPrivateKey = opts.ephemPrivateKey || crypto.randomBytes(32);
}
ephemPublicKey = getPublic(ephemPrivateKey);
resolve(derive(ephemPrivateKey, publicKeyTo));
}).then(function(Px) {
var hash = sha512(Px);
var iv = opts.iv || crypto.randomBytes(16);
var encryptionKey = hash.slice(0, 32);
var macKey = hash.slice(32);
var ciphertext = aes256CbcEncrypt(iv, encryptionKey, msg);
var dataToMac = Buffer.concat([iv, ephemPublicKey, ciphertext]);
var mac = Buffer.from(hmacSha256(macKey, dataToMac));
return {
iv: iv,
ephemPublicKey: ephemPublicKey,
ciphertext: ciphertext,
mac: mac,
};
});
};
/**
* Decrypt message using given private key.
* @param {Buffer} privateKey - A 32-byte private key of recepient of
* the mesage
* @param {Ecies} opts - ECIES structure (result of ECIES encryption)
* @return {Promise.<Buffer>} - A promise that resolves with the
* plaintext on successful decryption and rejects on failure.
*/
exports.decrypt = function(privateKey, opts) {
return derive(privateKey, opts.ephemPublicKey).then(function(Px) {
assert(privateKey.length === 32, "Bad private key");
assert(isValidPrivateKey(privateKey), "Bad private key");
var hash = sha512(Px);
var encryptionKey = hash.slice(0, 32);
var macKey = hash.slice(32);
var dataToMac = Buffer.concat([
opts.iv,
opts.ephemPublicKey,
opts.ciphertext
]);
var realMac = hmacSha256(macKey, dataToMac);
assert(equalConstTime(opts.mac, realMac), "Bad MAC"); return aes256CbcDecrypt(opts.iv, encryptionKey, opts.ciphertext);
});
};