JavaScript Elliptic curve cryptography library compatible with PyBitmessage
Go to file
Kagami Hiiragi 4e1001a842 ECDH (Node)
2015-01-13 22:39:37 +03:00
.gitignore ECDH (Node) 2015-01-13 22:39:37 +03:00
.jshintignore Initial commit 2014-12-21 20:46:37 +03:00
.jshintrc Initial commit 2014-12-21 20:46:37 +03:00
.npmignore ECDH (Node) 2015-01-13 22:39:37 +03:00
.travis.yml Initial commit 2014-12-21 20:46:37 +03:00
binding.gyp ECDH (Node) 2015-01-13 22:39:37 +03:00
browser.js ECIES (Browser) 2015-01-13 16:21:11 +03:00
COPYING Initial commit 2014-12-21 20:46:37 +03:00
ecdh.cc ECDH (Node) 2015-01-13 22:39:37 +03:00
index.js ECDH (Node) 2015-01-13 22:39:37 +03:00
karma.conf.js Setup karma 2014-12-21 21:05:05 +03:00
package.json ECDH (Node) 2015-01-13 22:39:37 +03:00
README.md ECDH (Node) 2015-01-13 22:39:37 +03:00
test.js ECDH (Node) 2015-01-13 22:39:37 +03:00

eccrypto Build Status

JavaScript Elliptic curve cryptography library for both browserify and node.

Motivation

There is currently no any isomorphic ECC library which provides ECDSA, ECDH and ECIES for both Node.js and Browser and uses the fastest implementation available (e.g. secp256k1-node is much faster than other libraries but can be used only on Node.js). So eccrypto is an attempt to create one.

Implementation details

With the help of browserify eccrypto provides different implementations for Browser and Node.js with the same API. Because WebCryptoAPI defines asynchronous promise-driven API, implementation for Node needs to use promises too.

  • Use Node.js crypto module/library bindings where possible
  • Use WebCryptoAPI where possible
  • Promise-driven API
  • Only secp256k1 curve, only SHA-512 (KDF), HMAC-SHA-256 (HMAC) and AES-256-CBC for ECIES

Native crypto API limitations

crypto

ECDH only works in Node 0.11+ (see https://github.com/joyent/node/pull/5854), ECDSA is only supported when keys are in PEM format (see https://github.com/joyent/node/issues/6904) and ECIES is not supported at all.

WebCryptoAPI

ECDSA and ECDH are supported in Chrome only on Windows (see also bug 338883), aren't supported by Firefox (fixed only in 36.0+, see bug 1034854) and ECIES is not defined at all in WebCryptoAPI draft. Also WebCryptoAPI currently defines only curves recommended by NIST which means that secp256k1 is not supported (see also: [1], [2]).

So we use seck256k1 library in Node for ECDSA, elliptic in Browser for ECDSA and ECDH and implement ECIES manually with the help of native crypto API.

Possible future goals

  • Support other curves/KDF/MAC/symmetric encryption schemes

Usage

ECDSA

var crypto = require("crypto");
var eccrypto = require("eccrypto");

var privateKey = crypto.randomBytes(32);
var publicKey = eccrypto.getPublic(privateKey);
var str = "msg to sign";
// Always hash you message to sign!
var msg = crypto.createHash("sha256").update(str).digest();

eccrypto.sign(privateKey, msg).then(function(sig) {
  console.log("signed:", sig);
  eccrypto.verify(publicKey, msg, sig).then(function() {
    console.log("verified");
  });
});

ECDH

var crypto = require("crypto");
var eccrypto = require("eccrypto");

var privateKeyA = crypto.randomBytes(32);
var publicKeyA = eccrypto.getPublic(privateKeyA);
var privateKeyB = crypto.randomBytes(32);
var publicKeyB = eccrypto.getPublic(privateKeyB);

eccrypto.derive(privateKeyA, publicKeyB).then(function(sharedKey1) {
  eccrypto.derive(privateKeyB, publicKeyA).then(function(sharedKey2) {
    console.log("Both shared keys are equal:", sharedKey1, sharedKey2);
  });
});

ECIES

License

eccrypto - JavaScript Elliptic curve cryptography library

Written in 2014 by Kagami Hiiragi kagami@genshiken.org

To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to this software to the public domain worldwide. This software is distributed without any warranty.

You should have received a copy of the CC0 Public Domain Dedication along with this software. If not, see http://creativecommons.org/publicdomain/zero/1.0/.