Make a package for kmod-nvme and include it into the image.
This commit is contained in:
parent
98b353fbc7
commit
0c1230e507
|
@ -28,6 +28,7 @@ make defconfig
|
|||
# Enable collectd network encryption
|
||||
echo "CONFIG_PACKAGE_COLLECTD_ENCRYPTED_NETWORK=y" >> .config
|
||||
|
||||
make package/kmod-nvme/compile
|
||||
make package/kmod-i2c-mux-pinctrl/compile
|
||||
make package/kmod-rtc-pcf85063/compile
|
||||
make package/asterisk-chan-quectel/compile
|
||||
|
@ -56,7 +57,7 @@ echo "CONFIG_TARGET_ROOTFS_PARTSIZE=308" >> .config
|
|||
echo "CONFIG_TARGET_ROOTFS_EXT4FS=n" >> .config
|
||||
|
||||
PACKAGES="kmod-i2c-bcm2835 kmod-i2c-mux kmod-i2c-mux-pinctrl \
|
||||
kmod-nf-nathelper-extra \
|
||||
kmod-nf-nathelper-extra kmod-nvme \
|
||||
kmod-rtc-ds1307 kmod-rtc-pcf8563 kmod-rtc-pcf85063 \
|
||||
kmod-usb-audio kmod-usb-net-rtl8152 \
|
||||
alsa-lib pciutils usbutils \
|
||||
|
|
32
feed/kmod-nvme/Makefile
Normal file
32
feed/kmod-nvme/Makefile
Normal file
|
@ -0,0 +1,32 @@
|
|||
include $(TOPDIR)/rules.mk
|
||||
include $(INCLUDE_DIR)/kernel.mk
|
||||
|
||||
PKG_NAME:=nvme
|
||||
|
||||
include $(INCLUDE_DIR)/package.mk
|
||||
|
||||
define KernelPackage/$(PKG_NAME)
|
||||
SUBMENU:=$(BLOCK_MENU)
|
||||
TITLE:=NVM Express block device
|
||||
DEPENDS:=@PCI_SUPPORT
|
||||
FILES:= \
|
||||
$(PKG_BUILD_DIR)/nvme-core.ko \
|
||||
$(PKG_BUILD_DIR)/nvme.ko
|
||||
AUTOLOAD:=$(call AutoLoad,30,nvme-core nvme)
|
||||
KCONFIG:=
|
||||
endef
|
||||
|
||||
define KernelPackage/nvme/description
|
||||
Kernel module for NVM Express solid state drives directly
|
||||
connected to the PCI or PCI Express bus.
|
||||
endef
|
||||
|
||||
EXTRA_KCONFIG:= \
|
||||
CONFIG_NVME_CORE=m \
|
||||
CONFIG_BLK_DEV_NVME=m \
|
||||
CONFIG_NVME_MULTIPATH=n \
|
||||
CONFIG_NVME_HWMON=n
|
||||
|
||||
include ../kmod.mk
|
||||
|
||||
$(eval $(call KernelPackage,$(PKG_NAME)))
|
28
feed/kmod-nvme/src/Makefile
Normal file
28
feed/kmod-nvme/src/Makefile
Normal file
|
@ -0,0 +1,28 @@
|
|||
# SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
ccflags-y += -I$(src)
|
||||
|
||||
obj-$(CONFIG_NVME_CORE) += nvme-core.o
|
||||
obj-$(CONFIG_BLK_DEV_NVME) += nvme.o
|
||||
obj-$(CONFIG_NVME_FABRICS) += nvme-fabrics.o
|
||||
obj-$(CONFIG_NVME_RDMA) += nvme-rdma.o
|
||||
obj-$(CONFIG_NVME_FC) += nvme-fc.o
|
||||
obj-$(CONFIG_NVME_TCP) += nvme-tcp.o
|
||||
|
||||
nvme-core-y := core.o
|
||||
nvme-core-$(CONFIG_TRACING) += trace.o
|
||||
nvme-core-$(CONFIG_NVME_MULTIPATH) += multipath.o
|
||||
nvme-core-$(CONFIG_NVM) += lightnvm.o
|
||||
nvme-core-$(CONFIG_BLK_DEV_ZONED) += zns.o
|
||||
nvme-core-$(CONFIG_FAULT_INJECTION_DEBUG_FS) += fault_inject.o
|
||||
nvme-core-$(CONFIG_NVME_HWMON) += hwmon.o
|
||||
|
||||
nvme-y += pci.o
|
||||
|
||||
nvme-fabrics-y += fabrics.o
|
||||
|
||||
nvme-rdma-y += rdma.o
|
||||
|
||||
nvme-fc-y += fc.o
|
||||
|
||||
nvme-tcp-y += tcp.o
|
4831
feed/kmod-nvme/src/core.c
Normal file
4831
feed/kmod-nvme/src/core.c
Normal file
|
@ -0,0 +1,4831 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* NVM Express device driver
|
||||
* Copyright (c) 2011-2014, Intel Corporation.
|
||||
*/
|
||||
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/blk-mq.h>
|
||||
#include <linux/compat.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/hdreg.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/backing-dev.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/pr.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/nvme_ioctl.h>
|
||||
#include <linux/pm_qos.h>
|
||||
#include <asm/unaligned.h>
|
||||
|
||||
#include "nvme.h"
|
||||
#include "fabrics.h"
|
||||
|
||||
#define CREATE_TRACE_POINTS
|
||||
#include "trace.h"
|
||||
|
||||
#define NVME_MINORS (1U << MINORBITS)
|
||||
|
||||
unsigned int admin_timeout = 60;
|
||||
module_param(admin_timeout, uint, 0644);
|
||||
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
|
||||
EXPORT_SYMBOL_GPL(admin_timeout);
|
||||
|
||||
unsigned int nvme_io_timeout = 30;
|
||||
module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
|
||||
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
|
||||
EXPORT_SYMBOL_GPL(nvme_io_timeout);
|
||||
|
||||
static unsigned char shutdown_timeout = 5;
|
||||
module_param(shutdown_timeout, byte, 0644);
|
||||
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
|
||||
|
||||
static u8 nvme_max_retries = 5;
|
||||
module_param_named(max_retries, nvme_max_retries, byte, 0644);
|
||||
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
|
||||
|
||||
static unsigned long default_ps_max_latency_us = 100000;
|
||||
module_param(default_ps_max_latency_us, ulong, 0644);
|
||||
MODULE_PARM_DESC(default_ps_max_latency_us,
|
||||
"max power saving latency for new devices; use PM QOS to change per device");
|
||||
|
||||
static bool force_apst;
|
||||
module_param(force_apst, bool, 0644);
|
||||
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
|
||||
|
||||
static bool streams;
|
||||
module_param(streams, bool, 0644);
|
||||
MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
|
||||
|
||||
/*
|
||||
* nvme_wq - hosts nvme related works that are not reset or delete
|
||||
* nvme_reset_wq - hosts nvme reset works
|
||||
* nvme_delete_wq - hosts nvme delete works
|
||||
*
|
||||
* nvme_wq will host works such as scan, aen handling, fw activation,
|
||||
* keep-alive, periodic reconnects etc. nvme_reset_wq
|
||||
* runs reset works which also flush works hosted on nvme_wq for
|
||||
* serialization purposes. nvme_delete_wq host controller deletion
|
||||
* works which flush reset works for serialization.
|
||||
*/
|
||||
struct workqueue_struct *nvme_wq;
|
||||
EXPORT_SYMBOL_GPL(nvme_wq);
|
||||
|
||||
struct workqueue_struct *nvme_reset_wq;
|
||||
EXPORT_SYMBOL_GPL(nvme_reset_wq);
|
||||
|
||||
struct workqueue_struct *nvme_delete_wq;
|
||||
EXPORT_SYMBOL_GPL(nvme_delete_wq);
|
||||
|
||||
static LIST_HEAD(nvme_subsystems);
|
||||
static DEFINE_MUTEX(nvme_subsystems_lock);
|
||||
|
||||
static DEFINE_IDA(nvme_instance_ida);
|
||||
static dev_t nvme_chr_devt;
|
||||
static struct class *nvme_class;
|
||||
static struct class *nvme_subsys_class;
|
||||
|
||||
static void nvme_put_subsystem(struct nvme_subsystem *subsys);
|
||||
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
|
||||
unsigned nsid);
|
||||
|
||||
static void nvme_update_bdev_size(struct gendisk *disk)
|
||||
{
|
||||
struct block_device *bdev = bdget_disk(disk, 0);
|
||||
|
||||
if (bdev) {
|
||||
bd_set_nr_sectors(bdev, get_capacity(disk));
|
||||
bdput(bdev);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Prepare a queue for teardown.
|
||||
*
|
||||
* This must forcibly unquiesce queues to avoid blocking dispatch, and only set
|
||||
* the capacity to 0 after that to avoid blocking dispatchers that may be
|
||||
* holding bd_butex. This will end buffered writers dirtying pages that can't
|
||||
* be synced.
|
||||
*/
|
||||
static void nvme_set_queue_dying(struct nvme_ns *ns)
|
||||
{
|
||||
if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
|
||||
return;
|
||||
|
||||
blk_set_queue_dying(ns->queue);
|
||||
blk_mq_unquiesce_queue(ns->queue);
|
||||
|
||||
set_capacity(ns->disk, 0);
|
||||
nvme_update_bdev_size(ns->disk);
|
||||
}
|
||||
|
||||
static void nvme_queue_scan(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
/*
|
||||
* Only new queue scan work when admin and IO queues are both alive
|
||||
*/
|
||||
if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
|
||||
queue_work(nvme_wq, &ctrl->scan_work);
|
||||
}
|
||||
|
||||
/*
|
||||
* Use this function to proceed with scheduling reset_work for a controller
|
||||
* that had previously been set to the resetting state. This is intended for
|
||||
* code paths that can't be interrupted by other reset attempts. A hot removal
|
||||
* may prevent this from succeeding.
|
||||
*/
|
||||
int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if (ctrl->state != NVME_CTRL_RESETTING)
|
||||
return -EBUSY;
|
||||
if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
|
||||
return -EBUSY;
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
|
||||
|
||||
int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
|
||||
return -EBUSY;
|
||||
if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
|
||||
return -EBUSY;
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
|
||||
|
||||
int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = nvme_reset_ctrl(ctrl);
|
||||
if (!ret) {
|
||||
flush_work(&ctrl->reset_work);
|
||||
if (ctrl->state != NVME_CTRL_LIVE)
|
||||
ret = -ENETRESET;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
|
||||
|
||||
static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
dev_info(ctrl->device,
|
||||
"Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
|
||||
|
||||
flush_work(&ctrl->reset_work);
|
||||
nvme_stop_ctrl(ctrl);
|
||||
nvme_remove_namespaces(ctrl);
|
||||
ctrl->ops->delete_ctrl(ctrl);
|
||||
nvme_uninit_ctrl(ctrl);
|
||||
}
|
||||
|
||||
static void nvme_delete_ctrl_work(struct work_struct *work)
|
||||
{
|
||||
struct nvme_ctrl *ctrl =
|
||||
container_of(work, struct nvme_ctrl, delete_work);
|
||||
|
||||
nvme_do_delete_ctrl(ctrl);
|
||||
}
|
||||
|
||||
int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
|
||||
return -EBUSY;
|
||||
if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
|
||||
return -EBUSY;
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
|
||||
|
||||
static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
/*
|
||||
* Keep a reference until nvme_do_delete_ctrl() complete,
|
||||
* since ->delete_ctrl can free the controller.
|
||||
*/
|
||||
nvme_get_ctrl(ctrl);
|
||||
if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
|
||||
nvme_do_delete_ctrl(ctrl);
|
||||
nvme_put_ctrl(ctrl);
|
||||
}
|
||||
|
||||
static blk_status_t nvme_error_status(u16 status)
|
||||
{
|
||||
switch (status & 0x7ff) {
|
||||
case NVME_SC_SUCCESS:
|
||||
return BLK_STS_OK;
|
||||
case NVME_SC_CAP_EXCEEDED:
|
||||
return BLK_STS_NOSPC;
|
||||
case NVME_SC_LBA_RANGE:
|
||||
case NVME_SC_CMD_INTERRUPTED:
|
||||
case NVME_SC_NS_NOT_READY:
|
||||
return BLK_STS_TARGET;
|
||||
case NVME_SC_BAD_ATTRIBUTES:
|
||||
case NVME_SC_ONCS_NOT_SUPPORTED:
|
||||
case NVME_SC_INVALID_OPCODE:
|
||||
case NVME_SC_INVALID_FIELD:
|
||||
case NVME_SC_INVALID_NS:
|
||||
return BLK_STS_NOTSUPP;
|
||||
case NVME_SC_WRITE_FAULT:
|
||||
case NVME_SC_READ_ERROR:
|
||||
case NVME_SC_UNWRITTEN_BLOCK:
|
||||
case NVME_SC_ACCESS_DENIED:
|
||||
case NVME_SC_READ_ONLY:
|
||||
case NVME_SC_COMPARE_FAILED:
|
||||
return BLK_STS_MEDIUM;
|
||||
case NVME_SC_GUARD_CHECK:
|
||||
case NVME_SC_APPTAG_CHECK:
|
||||
case NVME_SC_REFTAG_CHECK:
|
||||
case NVME_SC_INVALID_PI:
|
||||
return BLK_STS_PROTECTION;
|
||||
case NVME_SC_RESERVATION_CONFLICT:
|
||||
return BLK_STS_NEXUS;
|
||||
case NVME_SC_HOST_PATH_ERROR:
|
||||
return BLK_STS_TRANSPORT;
|
||||
case NVME_SC_ZONE_TOO_MANY_ACTIVE:
|
||||
return BLK_STS_ZONE_ACTIVE_RESOURCE;
|
||||
case NVME_SC_ZONE_TOO_MANY_OPEN:
|
||||
return BLK_STS_ZONE_OPEN_RESOURCE;
|
||||
default:
|
||||
return BLK_STS_IOERR;
|
||||
}
|
||||
}
|
||||
|
||||
static void nvme_retry_req(struct request *req)
|
||||
{
|
||||
struct nvme_ns *ns = req->q->queuedata;
|
||||
unsigned long delay = 0;
|
||||
u16 crd;
|
||||
|
||||
/* The mask and shift result must be <= 3 */
|
||||
crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
|
||||
if (ns && crd)
|
||||
delay = ns->ctrl->crdt[crd - 1] * 100;
|
||||
|
||||
nvme_req(req)->retries++;
|
||||
blk_mq_requeue_request(req, false);
|
||||
blk_mq_delay_kick_requeue_list(req->q, delay);
|
||||
}
|
||||
|
||||
enum nvme_disposition {
|
||||
COMPLETE,
|
||||
RETRY,
|
||||
FAILOVER,
|
||||
};
|
||||
|
||||
static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
|
||||
{
|
||||
if (likely(nvme_req(req)->status == 0))
|
||||
return COMPLETE;
|
||||
|
||||
if (blk_noretry_request(req) ||
|
||||
(nvme_req(req)->status & NVME_SC_DNR) ||
|
||||
nvme_req(req)->retries >= nvme_max_retries)
|
||||
return COMPLETE;
|
||||
|
||||
if (req->cmd_flags & REQ_NVME_MPATH) {
|
||||
if (nvme_is_path_error(nvme_req(req)->status) ||
|
||||
blk_queue_dying(req->q))
|
||||
return FAILOVER;
|
||||
} else {
|
||||
if (blk_queue_dying(req->q))
|
||||
return COMPLETE;
|
||||
}
|
||||
|
||||
return RETRY;
|
||||
}
|
||||
|
||||
static inline void nvme_end_req(struct request *req)
|
||||
{
|
||||
blk_status_t status = nvme_error_status(nvme_req(req)->status);
|
||||
|
||||
if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
|
||||
req_op(req) == REQ_OP_ZONE_APPEND)
|
||||
req->__sector = nvme_lba_to_sect(req->q->queuedata,
|
||||
le64_to_cpu(nvme_req(req)->result.u64));
|
||||
|
||||
nvme_trace_bio_complete(req, status);
|
||||
blk_mq_end_request(req, status);
|
||||
}
|
||||
|
||||
void nvme_complete_rq(struct request *req)
|
||||
{
|
||||
trace_nvme_complete_rq(req);
|
||||
nvme_cleanup_cmd(req);
|
||||
|
||||
if (nvme_req(req)->ctrl->kas)
|
||||
nvme_req(req)->ctrl->comp_seen = true;
|
||||
|
||||
switch (nvme_decide_disposition(req)) {
|
||||
case COMPLETE:
|
||||
nvme_end_req(req);
|
||||
return;
|
||||
case RETRY:
|
||||
nvme_retry_req(req);
|
||||
return;
|
||||
case FAILOVER:
|
||||
nvme_failover_req(req);
|
||||
return;
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_complete_rq);
|
||||
|
||||
bool nvme_cancel_request(struct request *req, void *data, bool reserved)
|
||||
{
|
||||
dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
|
||||
"Cancelling I/O %d", req->tag);
|
||||
|
||||
/* don't abort one completed request */
|
||||
if (blk_mq_request_completed(req))
|
||||
return true;
|
||||
|
||||
nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
|
||||
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
|
||||
blk_mq_complete_request(req);
|
||||
return true;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_cancel_request);
|
||||
|
||||
void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if (ctrl->tagset) {
|
||||
blk_mq_tagset_busy_iter(ctrl->tagset,
|
||||
nvme_cancel_request, ctrl);
|
||||
blk_mq_tagset_wait_completed_request(ctrl->tagset);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
|
||||
|
||||
void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if (ctrl->admin_tagset) {
|
||||
blk_mq_tagset_busy_iter(ctrl->admin_tagset,
|
||||
nvme_cancel_request, ctrl);
|
||||
blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
|
||||
|
||||
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
|
||||
enum nvme_ctrl_state new_state)
|
||||
{
|
||||
enum nvme_ctrl_state old_state;
|
||||
unsigned long flags;
|
||||
bool changed = false;
|
||||
|
||||
spin_lock_irqsave(&ctrl->lock, flags);
|
||||
|
||||
old_state = ctrl->state;
|
||||
switch (new_state) {
|
||||
case NVME_CTRL_LIVE:
|
||||
switch (old_state) {
|
||||
case NVME_CTRL_NEW:
|
||||
case NVME_CTRL_RESETTING:
|
||||
case NVME_CTRL_CONNECTING:
|
||||
changed = true;
|
||||
fallthrough;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case NVME_CTRL_RESETTING:
|
||||
switch (old_state) {
|
||||
case NVME_CTRL_NEW:
|
||||
case NVME_CTRL_LIVE:
|
||||
changed = true;
|
||||
fallthrough;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case NVME_CTRL_CONNECTING:
|
||||
switch (old_state) {
|
||||
case NVME_CTRL_NEW:
|
||||
case NVME_CTRL_RESETTING:
|
||||
changed = true;
|
||||
fallthrough;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case NVME_CTRL_DELETING:
|
||||
switch (old_state) {
|
||||
case NVME_CTRL_LIVE:
|
||||
case NVME_CTRL_RESETTING:
|
||||
case NVME_CTRL_CONNECTING:
|
||||
changed = true;
|
||||
fallthrough;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case NVME_CTRL_DELETING_NOIO:
|
||||
switch (old_state) {
|
||||
case NVME_CTRL_DELETING:
|
||||
case NVME_CTRL_DEAD:
|
||||
changed = true;
|
||||
fallthrough;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case NVME_CTRL_DEAD:
|
||||
switch (old_state) {
|
||||
case NVME_CTRL_DELETING:
|
||||
changed = true;
|
||||
fallthrough;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (changed) {
|
||||
ctrl->state = new_state;
|
||||
wake_up_all(&ctrl->state_wq);
|
||||
}
|
||||
|
||||
spin_unlock_irqrestore(&ctrl->lock, flags);
|
||||
if (changed && ctrl->state == NVME_CTRL_LIVE)
|
||||
nvme_kick_requeue_lists(ctrl);
|
||||
return changed;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
|
||||
|
||||
/*
|
||||
* Returns true for sink states that can't ever transition back to live.
|
||||
*/
|
||||
static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
switch (ctrl->state) {
|
||||
case NVME_CTRL_NEW:
|
||||
case NVME_CTRL_LIVE:
|
||||
case NVME_CTRL_RESETTING:
|
||||
case NVME_CTRL_CONNECTING:
|
||||
return false;
|
||||
case NVME_CTRL_DELETING:
|
||||
case NVME_CTRL_DELETING_NOIO:
|
||||
case NVME_CTRL_DEAD:
|
||||
return true;
|
||||
default:
|
||||
WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Waits for the controller state to be resetting, or returns false if it is
|
||||
* not possible to ever transition to that state.
|
||||
*/
|
||||
bool nvme_wait_reset(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
wait_event(ctrl->state_wq,
|
||||
nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
|
||||
nvme_state_terminal(ctrl));
|
||||
return ctrl->state == NVME_CTRL_RESETTING;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_wait_reset);
|
||||
|
||||
static void nvme_free_ns_head(struct kref *ref)
|
||||
{
|
||||
struct nvme_ns_head *head =
|
||||
container_of(ref, struct nvme_ns_head, ref);
|
||||
|
||||
nvme_mpath_remove_disk(head);
|
||||
ida_simple_remove(&head->subsys->ns_ida, head->instance);
|
||||
cleanup_srcu_struct(&head->srcu);
|
||||
nvme_put_subsystem(head->subsys);
|
||||
kfree(head);
|
||||
}
|
||||
|
||||
static void nvme_put_ns_head(struct nvme_ns_head *head)
|
||||
{
|
||||
kref_put(&head->ref, nvme_free_ns_head);
|
||||
}
|
||||
|
||||
static void nvme_free_ns(struct kref *kref)
|
||||
{
|
||||
struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
|
||||
|
||||
if (ns->ndev)
|
||||
nvme_nvm_unregister(ns);
|
||||
|
||||
put_disk(ns->disk);
|
||||
nvme_put_ns_head(ns->head);
|
||||
nvme_put_ctrl(ns->ctrl);
|
||||
kfree(ns);
|
||||
}
|
||||
|
||||
void nvme_put_ns(struct nvme_ns *ns)
|
||||
{
|
||||
kref_put(&ns->kref, nvme_free_ns);
|
||||
}
|
||||
EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
|
||||
|
||||
static inline void nvme_clear_nvme_request(struct request *req)
|
||||
{
|
||||
nvme_req(req)->retries = 0;
|
||||
nvme_req(req)->flags = 0;
|
||||
req->rq_flags |= RQF_DONTPREP;
|
||||
}
|
||||
|
||||
static inline unsigned int nvme_req_op(struct nvme_command *cmd)
|
||||
{
|
||||
return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
|
||||
}
|
||||
|
||||
static inline void nvme_init_request(struct request *req,
|
||||
struct nvme_command *cmd)
|
||||
{
|
||||
if (req->q->queuedata)
|
||||
req->timeout = NVME_IO_TIMEOUT;
|
||||
else /* no queuedata implies admin queue */
|
||||
req->timeout = ADMIN_TIMEOUT;
|
||||
|
||||
req->cmd_flags |= REQ_FAILFAST_DRIVER;
|
||||
nvme_clear_nvme_request(req);
|
||||
nvme_req(req)->cmd = cmd;
|
||||
}
|
||||
|
||||
struct request *nvme_alloc_request(struct request_queue *q,
|
||||
struct nvme_command *cmd, blk_mq_req_flags_t flags)
|
||||
{
|
||||
struct request *req;
|
||||
|
||||
req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
|
||||
if (!IS_ERR(req))
|
||||
nvme_init_request(req, cmd);
|
||||
return req;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_alloc_request);
|
||||
|
||||
struct request *nvme_alloc_request_qid(struct request_queue *q,
|
||||
struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
|
||||
{
|
||||
struct request *req;
|
||||
|
||||
req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
|
||||
qid ? qid - 1 : 0);
|
||||
if (!IS_ERR(req))
|
||||
nvme_init_request(req, cmd);
|
||||
return req;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_alloc_request_qid);
|
||||
|
||||
static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
|
||||
{
|
||||
struct nvme_command c;
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
|
||||
c.directive.opcode = nvme_admin_directive_send;
|
||||
c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
|
||||
c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
|
||||
c.directive.dtype = NVME_DIR_IDENTIFY;
|
||||
c.directive.tdtype = NVME_DIR_STREAMS;
|
||||
c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
|
||||
|
||||
return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
|
||||
}
|
||||
|
||||
static int nvme_disable_streams(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
return nvme_toggle_streams(ctrl, false);
|
||||
}
|
||||
|
||||
static int nvme_enable_streams(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
return nvme_toggle_streams(ctrl, true);
|
||||
}
|
||||
|
||||
static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
|
||||
struct streams_directive_params *s, u32 nsid)
|
||||
{
|
||||
struct nvme_command c;
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
memset(s, 0, sizeof(*s));
|
||||
|
||||
c.directive.opcode = nvme_admin_directive_recv;
|
||||
c.directive.nsid = cpu_to_le32(nsid);
|
||||
c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
|
||||
c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
|
||||
c.directive.dtype = NVME_DIR_STREAMS;
|
||||
|
||||
return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
|
||||
}
|
||||
|
||||
static int nvme_configure_directives(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct streams_directive_params s;
|
||||
int ret;
|
||||
|
||||
if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
|
||||
return 0;
|
||||
if (!streams)
|
||||
return 0;
|
||||
|
||||
ret = nvme_enable_streams(ctrl);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
|
||||
if (ret)
|
||||
goto out_disable_stream;
|
||||
|
||||
ctrl->nssa = le16_to_cpu(s.nssa);
|
||||
if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
|
||||
dev_info(ctrl->device, "too few streams (%u) available\n",
|
||||
ctrl->nssa);
|
||||
goto out_disable_stream;
|
||||
}
|
||||
|
||||
ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
|
||||
dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
|
||||
return 0;
|
||||
|
||||
out_disable_stream:
|
||||
nvme_disable_streams(ctrl);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if 'req' has a write hint associated with it. If it does, assign
|
||||
* a valid namespace stream to the write.
|
||||
*/
|
||||
static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
|
||||
struct request *req, u16 *control,
|
||||
u32 *dsmgmt)
|
||||
{
|
||||
enum rw_hint streamid = req->write_hint;
|
||||
|
||||
if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
|
||||
streamid = 0;
|
||||
else {
|
||||
streamid--;
|
||||
if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
|
||||
return;
|
||||
|
||||
*control |= NVME_RW_DTYPE_STREAMS;
|
||||
*dsmgmt |= streamid << 16;
|
||||
}
|
||||
|
||||
if (streamid < ARRAY_SIZE(req->q->write_hints))
|
||||
req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
|
||||
}
|
||||
|
||||
static inline void nvme_setup_passthrough(struct request *req,
|
||||
struct nvme_command *cmd)
|
||||
{
|
||||
memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
|
||||
/* passthru commands should let the driver set the SGL flags */
|
||||
cmd->common.flags &= ~NVME_CMD_SGL_ALL;
|
||||
}
|
||||
|
||||
static inline void nvme_setup_flush(struct nvme_ns *ns,
|
||||
struct nvme_command *cmnd)
|
||||
{
|
||||
cmnd->common.opcode = nvme_cmd_flush;
|
||||
cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
|
||||
}
|
||||
|
||||
static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
|
||||
struct nvme_command *cmnd)
|
||||
{
|
||||
unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
|
||||
struct nvme_dsm_range *range;
|
||||
struct bio *bio;
|
||||
|
||||
/*
|
||||
* Some devices do not consider the DSM 'Number of Ranges' field when
|
||||
* determining how much data to DMA. Always allocate memory for maximum
|
||||
* number of segments to prevent device reading beyond end of buffer.
|
||||
*/
|
||||
static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
|
||||
|
||||
range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
|
||||
if (!range) {
|
||||
/*
|
||||
* If we fail allocation our range, fallback to the controller
|
||||
* discard page. If that's also busy, it's safe to return
|
||||
* busy, as we know we can make progress once that's freed.
|
||||
*/
|
||||
if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
|
||||
return BLK_STS_RESOURCE;
|
||||
|
||||
range = page_address(ns->ctrl->discard_page);
|
||||
}
|
||||
|
||||
__rq_for_each_bio(bio, req) {
|
||||
u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
|
||||
u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
|
||||
|
||||
if (n < segments) {
|
||||
range[n].cattr = cpu_to_le32(0);
|
||||
range[n].nlb = cpu_to_le32(nlb);
|
||||
range[n].slba = cpu_to_le64(slba);
|
||||
}
|
||||
n++;
|
||||
}
|
||||
|
||||
if (WARN_ON_ONCE(n != segments)) {
|
||||
if (virt_to_page(range) == ns->ctrl->discard_page)
|
||||
clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
|
||||
else
|
||||
kfree(range);
|
||||
return BLK_STS_IOERR;
|
||||
}
|
||||
|
||||
cmnd->dsm.opcode = nvme_cmd_dsm;
|
||||
cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
|
||||
cmnd->dsm.nr = cpu_to_le32(segments - 1);
|
||||
cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
|
||||
|
||||
req->special_vec.bv_page = virt_to_page(range);
|
||||
req->special_vec.bv_offset = offset_in_page(range);
|
||||
req->special_vec.bv_len = alloc_size;
|
||||
req->rq_flags |= RQF_SPECIAL_PAYLOAD;
|
||||
|
||||
return BLK_STS_OK;
|
||||
}
|
||||
|
||||
static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
|
||||
struct request *req, struct nvme_command *cmnd)
|
||||
{
|
||||
if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
|
||||
return nvme_setup_discard(ns, req, cmnd);
|
||||
|
||||
cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
|
||||
cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
|
||||
cmnd->write_zeroes.slba =
|
||||
cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
|
||||
cmnd->write_zeroes.length =
|
||||
cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
|
||||
if (nvme_ns_has_pi(ns))
|
||||
cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
|
||||
else
|
||||
cmnd->write_zeroes.control = 0;
|
||||
return BLK_STS_OK;
|
||||
}
|
||||
|
||||
static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
|
||||
struct request *req, struct nvme_command *cmnd,
|
||||
enum nvme_opcode op)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = ns->ctrl;
|
||||
u16 control = 0;
|
||||
u32 dsmgmt = 0;
|
||||
|
||||
if (req->cmd_flags & REQ_FUA)
|
||||
control |= NVME_RW_FUA;
|
||||
if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
|
||||
control |= NVME_RW_LR;
|
||||
|
||||
if (req->cmd_flags & REQ_RAHEAD)
|
||||
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
|
||||
|
||||
cmnd->rw.opcode = op;
|
||||
cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
|
||||
cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
|
||||
cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
|
||||
|
||||
if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
|
||||
nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
|
||||
|
||||
if (ns->ms) {
|
||||
/*
|
||||
* If formated with metadata, the block layer always provides a
|
||||
* metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
|
||||
* we enable the PRACT bit for protection information or set the
|
||||
* namespace capacity to zero to prevent any I/O.
|
||||
*/
|
||||
if (!blk_integrity_rq(req)) {
|
||||
if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
|
||||
return BLK_STS_NOTSUPP;
|
||||
control |= NVME_RW_PRINFO_PRACT;
|
||||
}
|
||||
|
||||
switch (ns->pi_type) {
|
||||
case NVME_NS_DPS_PI_TYPE3:
|
||||
control |= NVME_RW_PRINFO_PRCHK_GUARD;
|
||||
break;
|
||||
case NVME_NS_DPS_PI_TYPE1:
|
||||
case NVME_NS_DPS_PI_TYPE2:
|
||||
control |= NVME_RW_PRINFO_PRCHK_GUARD |
|
||||
NVME_RW_PRINFO_PRCHK_REF;
|
||||
if (op == nvme_cmd_zone_append)
|
||||
control |= NVME_RW_APPEND_PIREMAP;
|
||||
cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
cmnd->rw.control = cpu_to_le16(control);
|
||||
cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void nvme_cleanup_cmd(struct request *req)
|
||||
{
|
||||
if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
|
||||
struct nvme_ns *ns = req->rq_disk->private_data;
|
||||
struct page *page = req->special_vec.bv_page;
|
||||
|
||||
if (page == ns->ctrl->discard_page)
|
||||
clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
|
||||
else
|
||||
kfree(page_address(page) + req->special_vec.bv_offset);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
|
||||
|
||||
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
|
||||
struct nvme_command *cmd)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
|
||||
blk_status_t ret = BLK_STS_OK;
|
||||
|
||||
if (!(req->rq_flags & RQF_DONTPREP))
|
||||
nvme_clear_nvme_request(req);
|
||||
|
||||
memset(cmd, 0, sizeof(*cmd));
|
||||
switch (req_op(req)) {
|
||||
case REQ_OP_DRV_IN:
|
||||
case REQ_OP_DRV_OUT:
|
||||
nvme_setup_passthrough(req, cmd);
|
||||
break;
|
||||
case REQ_OP_FLUSH:
|
||||
nvme_setup_flush(ns, cmd);
|
||||
break;
|
||||
case REQ_OP_ZONE_RESET_ALL:
|
||||
case REQ_OP_ZONE_RESET:
|
||||
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
|
||||
break;
|
||||
case REQ_OP_ZONE_OPEN:
|
||||
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
|
||||
break;
|
||||
case REQ_OP_ZONE_CLOSE:
|
||||
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
|
||||
break;
|
||||
case REQ_OP_ZONE_FINISH:
|
||||
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
|
||||
break;
|
||||
case REQ_OP_WRITE_ZEROES:
|
||||
ret = nvme_setup_write_zeroes(ns, req, cmd);
|
||||
break;
|
||||
case REQ_OP_DISCARD:
|
||||
ret = nvme_setup_discard(ns, req, cmd);
|
||||
break;
|
||||
case REQ_OP_READ:
|
||||
ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
|
||||
break;
|
||||
case REQ_OP_WRITE:
|
||||
ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
|
||||
break;
|
||||
case REQ_OP_ZONE_APPEND:
|
||||
ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
|
||||
break;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
return BLK_STS_IOERR;
|
||||
}
|
||||
|
||||
if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
|
||||
nvme_req(req)->genctr++;
|
||||
cmd->common.command_id = nvme_cid(req);
|
||||
trace_nvme_setup_cmd(req, cmd);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_setup_cmd);
|
||||
|
||||
static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
|
||||
{
|
||||
struct completion *waiting = rq->end_io_data;
|
||||
|
||||
rq->end_io_data = NULL;
|
||||
complete(waiting);
|
||||
}
|
||||
|
||||
static void nvme_execute_rq_polled(struct request_queue *q,
|
||||
struct gendisk *bd_disk, struct request *rq, int at_head)
|
||||
{
|
||||
DECLARE_COMPLETION_ONSTACK(wait);
|
||||
|
||||
WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
|
||||
|
||||
rq->cmd_flags |= REQ_HIPRI;
|
||||
rq->end_io_data = &wait;
|
||||
blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
|
||||
|
||||
while (!completion_done(&wait)) {
|
||||
blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
|
||||
cond_resched();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns 0 on success. If the result is negative, it's a Linux error code;
|
||||
* if the result is positive, it's an NVM Express status code
|
||||
*/
|
||||
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
||||
union nvme_result *result, void *buffer, unsigned bufflen,
|
||||
unsigned timeout, int qid, int at_head,
|
||||
blk_mq_req_flags_t flags, bool poll)
|
||||
{
|
||||
struct request *req;
|
||||
int ret;
|
||||
|
||||
if (qid == NVME_QID_ANY)
|
||||
req = nvme_alloc_request(q, cmd, flags);
|
||||
else
|
||||
req = nvme_alloc_request_qid(q, cmd, flags, qid);
|
||||
if (IS_ERR(req))
|
||||
return PTR_ERR(req);
|
||||
|
||||
if (timeout)
|
||||
req->timeout = timeout;
|
||||
|
||||
if (buffer && bufflen) {
|
||||
ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
|
||||
if (ret)
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (poll)
|
||||
nvme_execute_rq_polled(req->q, NULL, req, at_head);
|
||||
else
|
||||
blk_execute_rq(req->q, NULL, req, at_head);
|
||||
if (result)
|
||||
*result = nvme_req(req)->result;
|
||||
if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
|
||||
ret = -EINTR;
|
||||
else
|
||||
ret = nvme_req(req)->status;
|
||||
out:
|
||||
blk_mq_free_request(req);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
|
||||
|
||||
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
||||
void *buffer, unsigned bufflen)
|
||||
{
|
||||
return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
|
||||
NVME_QID_ANY, 0, 0, false);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
|
||||
|
||||
static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
|
||||
unsigned len, u32 seed, bool write)
|
||||
{
|
||||
struct bio_integrity_payload *bip;
|
||||
int ret = -ENOMEM;
|
||||
void *buf;
|
||||
|
||||
buf = kmalloc(len, GFP_KERNEL);
|
||||
if (!buf)
|
||||
goto out;
|
||||
|
||||
ret = -EFAULT;
|
||||
if (write && copy_from_user(buf, ubuf, len))
|
||||
goto out_free_meta;
|
||||
|
||||
bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
|
||||
if (IS_ERR(bip)) {
|
||||
ret = PTR_ERR(bip);
|
||||
goto out_free_meta;
|
||||
}
|
||||
|
||||
bip->bip_iter.bi_size = len;
|
||||
bip->bip_iter.bi_sector = seed;
|
||||
ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
|
||||
offset_in_page(buf));
|
||||
if (ret == len)
|
||||
return buf;
|
||||
ret = -ENOMEM;
|
||||
out_free_meta:
|
||||
kfree(buf);
|
||||
out:
|
||||
return ERR_PTR(ret);
|
||||
}
|
||||
|
||||
static u32 nvme_known_admin_effects(u8 opcode)
|
||||
{
|
||||
switch (opcode) {
|
||||
case nvme_admin_format_nvm:
|
||||
return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
|
||||
NVME_CMD_EFFECTS_CSE_MASK;
|
||||
case nvme_admin_sanitize_nvm:
|
||||
return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
|
||||
{
|
||||
u32 effects = 0;
|
||||
|
||||
if (ns) {
|
||||
if (ns->head->effects)
|
||||
effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
|
||||
if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
|
||||
dev_warn(ctrl->device,
|
||||
"IO command:%02x has unhandled effects:%08x\n",
|
||||
opcode, effects);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (ctrl->effects)
|
||||
effects = le32_to_cpu(ctrl->effects->acs[opcode]);
|
||||
effects |= nvme_known_admin_effects(opcode);
|
||||
|
||||
return effects;
|
||||
}
|
||||
EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
|
||||
|
||||
static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
|
||||
u8 opcode)
|
||||
{
|
||||
u32 effects = nvme_command_effects(ctrl, ns, opcode);
|
||||
|
||||
/*
|
||||
* For simplicity, IO to all namespaces is quiesced even if the command
|
||||
* effects say only one namespace is affected.
|
||||
*/
|
||||
if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
|
||||
mutex_lock(&ctrl->scan_lock);
|
||||
mutex_lock(&ctrl->subsys->lock);
|
||||
nvme_mpath_start_freeze(ctrl->subsys);
|
||||
nvme_mpath_wait_freeze(ctrl->subsys);
|
||||
nvme_start_freeze(ctrl);
|
||||
nvme_wait_freeze(ctrl);
|
||||
}
|
||||
return effects;
|
||||
}
|
||||
|
||||
static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
|
||||
{
|
||||
if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
|
||||
nvme_unfreeze(ctrl);
|
||||
nvme_mpath_unfreeze(ctrl->subsys);
|
||||
mutex_unlock(&ctrl->subsys->lock);
|
||||
nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
|
||||
mutex_unlock(&ctrl->scan_lock);
|
||||
}
|
||||
if (effects & NVME_CMD_EFFECTS_CCC)
|
||||
nvme_init_identify(ctrl);
|
||||
if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
|
||||
nvme_queue_scan(ctrl);
|
||||
flush_work(&ctrl->scan_work);
|
||||
}
|
||||
}
|
||||
|
||||
void nvme_execute_passthru_rq(struct request *rq)
|
||||
{
|
||||
struct nvme_command *cmd = nvme_req(rq)->cmd;
|
||||
struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
|
||||
struct nvme_ns *ns = rq->q->queuedata;
|
||||
struct gendisk *disk = ns ? ns->disk : NULL;
|
||||
u32 effects;
|
||||
|
||||
effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
|
||||
blk_execute_rq(rq->q, disk, rq, 0);
|
||||
nvme_passthru_end(ctrl, effects);
|
||||
}
|
||||
EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
|
||||
|
||||
static int nvme_submit_user_cmd(struct request_queue *q,
|
||||
struct nvme_command *cmd, void __user *ubuffer,
|
||||
unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
|
||||
u32 meta_seed, u64 *result, unsigned timeout)
|
||||
{
|
||||
bool write = nvme_is_write(cmd);
|
||||
struct nvme_ns *ns = q->queuedata;
|
||||
struct gendisk *disk = ns ? ns->disk : NULL;
|
||||
struct request *req;
|
||||
struct bio *bio = NULL;
|
||||
void *meta = NULL;
|
||||
int ret;
|
||||
|
||||
req = nvme_alloc_request(q, cmd, 0);
|
||||
if (IS_ERR(req))
|
||||
return PTR_ERR(req);
|
||||
|
||||
if (timeout)
|
||||
req->timeout = timeout;
|
||||
nvme_req(req)->flags |= NVME_REQ_USERCMD;
|
||||
|
||||
if (ubuffer && bufflen) {
|
||||
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
|
||||
GFP_KERNEL);
|
||||
if (ret)
|
||||
goto out;
|
||||
bio = req->bio;
|
||||
bio->bi_disk = disk;
|
||||
if (disk && meta_buffer && meta_len) {
|
||||
meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
|
||||
meta_seed, write);
|
||||
if (IS_ERR(meta)) {
|
||||
ret = PTR_ERR(meta);
|
||||
goto out_unmap;
|
||||
}
|
||||
req->cmd_flags |= REQ_INTEGRITY;
|
||||
}
|
||||
}
|
||||
|
||||
nvme_execute_passthru_rq(req);
|
||||
if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
|
||||
ret = -EINTR;
|
||||
else
|
||||
ret = nvme_req(req)->status;
|
||||
if (result)
|
||||
*result = le64_to_cpu(nvme_req(req)->result.u64);
|
||||
if (meta && !ret && !write) {
|
||||
if (copy_to_user(meta_buffer, meta, meta_len))
|
||||
ret = -EFAULT;
|
||||
}
|
||||
kfree(meta);
|
||||
out_unmap:
|
||||
if (bio)
|
||||
blk_rq_unmap_user(bio);
|
||||
out:
|
||||
blk_mq_free_request(req);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = rq->end_io_data;
|
||||
unsigned long flags;
|
||||
bool startka = false;
|
||||
|
||||
blk_mq_free_request(rq);
|
||||
|
||||
if (status) {
|
||||
dev_err(ctrl->device,
|
||||
"failed nvme_keep_alive_end_io error=%d\n",
|
||||
status);
|
||||
return;
|
||||
}
|
||||
|
||||
ctrl->comp_seen = false;
|
||||
spin_lock_irqsave(&ctrl->lock, flags);
|
||||
if (ctrl->state == NVME_CTRL_LIVE ||
|
||||
ctrl->state == NVME_CTRL_CONNECTING)
|
||||
startka = true;
|
||||
spin_unlock_irqrestore(&ctrl->lock, flags);
|
||||
if (startka)
|
||||
queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
|
||||
}
|
||||
|
||||
static int nvme_keep_alive(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct request *rq;
|
||||
|
||||
rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
|
||||
BLK_MQ_REQ_RESERVED);
|
||||
if (IS_ERR(rq))
|
||||
return PTR_ERR(rq);
|
||||
|
||||
rq->timeout = ctrl->kato * HZ;
|
||||
rq->end_io_data = ctrl;
|
||||
|
||||
blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void nvme_keep_alive_work(struct work_struct *work)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
|
||||
struct nvme_ctrl, ka_work);
|
||||
bool comp_seen = ctrl->comp_seen;
|
||||
|
||||
if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
|
||||
dev_dbg(ctrl->device,
|
||||
"reschedule traffic based keep-alive timer\n");
|
||||
ctrl->comp_seen = false;
|
||||
queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
|
||||
return;
|
||||
}
|
||||
|
||||
if (nvme_keep_alive(ctrl)) {
|
||||
/* allocation failure, reset the controller */
|
||||
dev_err(ctrl->device, "keep-alive failed\n");
|
||||
nvme_reset_ctrl(ctrl);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if (unlikely(ctrl->kato == 0))
|
||||
return;
|
||||
|
||||
queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
|
||||
}
|
||||
|
||||
void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if (unlikely(ctrl->kato == 0))
|
||||
return;
|
||||
|
||||
cancel_delayed_work_sync(&ctrl->ka_work);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
|
||||
|
||||
/*
|
||||
* In NVMe 1.0 the CNS field was just a binary controller or namespace
|
||||
* flag, thus sending any new CNS opcodes has a big chance of not working.
|
||||
* Qemu unfortunately had that bug after reporting a 1.1 version compliance
|
||||
* (but not for any later version).
|
||||
*/
|
||||
static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
|
||||
return ctrl->vs < NVME_VS(1, 2, 0);
|
||||
return ctrl->vs < NVME_VS(1, 1, 0);
|
||||
}
|
||||
|
||||
static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
|
||||
{
|
||||
struct nvme_command c = { };
|
||||
int error;
|
||||
|
||||
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
|
||||
c.identify.opcode = nvme_admin_identify;
|
||||
c.identify.cns = NVME_ID_CNS_CTRL;
|
||||
|
||||
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
|
||||
if (!*id)
|
||||
return -ENOMEM;
|
||||
|
||||
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
|
||||
sizeof(struct nvme_id_ctrl));
|
||||
if (error)
|
||||
kfree(*id);
|
||||
return error;
|
||||
}
|
||||
|
||||
static bool nvme_multi_css(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
|
||||
}
|
||||
|
||||
static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
|
||||
struct nvme_ns_id_desc *cur, bool *csi_seen)
|
||||
{
|
||||
const char *warn_str = "ctrl returned bogus length:";
|
||||
void *data = cur;
|
||||
|
||||
switch (cur->nidt) {
|
||||
case NVME_NIDT_EUI64:
|
||||
if (cur->nidl != NVME_NIDT_EUI64_LEN) {
|
||||
dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
|
||||
warn_str, cur->nidl);
|
||||
return -1;
|
||||
}
|
||||
if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
|
||||
return NVME_NIDT_EUI64_LEN;
|
||||
memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
|
||||
return NVME_NIDT_EUI64_LEN;
|
||||
case NVME_NIDT_NGUID:
|
||||
if (cur->nidl != NVME_NIDT_NGUID_LEN) {
|
||||
dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
|
||||
warn_str, cur->nidl);
|
||||
return -1;
|
||||
}
|
||||
if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
|
||||
return NVME_NIDT_NGUID_LEN;
|
||||
memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
|
||||
return NVME_NIDT_NGUID_LEN;
|
||||
case NVME_NIDT_UUID:
|
||||
if (cur->nidl != NVME_NIDT_UUID_LEN) {
|
||||
dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
|
||||
warn_str, cur->nidl);
|
||||
return -1;
|
||||
}
|
||||
if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
|
||||
return NVME_NIDT_UUID_LEN;
|
||||
uuid_copy(&ids->uuid, data + sizeof(*cur));
|
||||
return NVME_NIDT_UUID_LEN;
|
||||
case NVME_NIDT_CSI:
|
||||
if (cur->nidl != NVME_NIDT_CSI_LEN) {
|
||||
dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
|
||||
warn_str, cur->nidl);
|
||||
return -1;
|
||||
}
|
||||
memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
|
||||
*csi_seen = true;
|
||||
return NVME_NIDT_CSI_LEN;
|
||||
default:
|
||||
/* Skip unknown types */
|
||||
return cur->nidl;
|
||||
}
|
||||
}
|
||||
|
||||
static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
|
||||
struct nvme_ns_ids *ids)
|
||||
{
|
||||
struct nvme_command c = { };
|
||||
bool csi_seen = false;
|
||||
int status, pos, len;
|
||||
void *data;
|
||||
|
||||
if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
|
||||
return 0;
|
||||
if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
|
||||
return 0;
|
||||
|
||||
c.identify.opcode = nvme_admin_identify;
|
||||
c.identify.nsid = cpu_to_le32(nsid);
|
||||
c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
|
||||
|
||||
data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
|
||||
if (!data)
|
||||
return -ENOMEM;
|
||||
|
||||
status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
|
||||
NVME_IDENTIFY_DATA_SIZE);
|
||||
if (status) {
|
||||
dev_warn(ctrl->device,
|
||||
"Identify Descriptors failed (%d)\n", status);
|
||||
goto free_data;
|
||||
}
|
||||
|
||||
for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
|
||||
struct nvme_ns_id_desc *cur = data + pos;
|
||||
|
||||
if (cur->nidl == 0)
|
||||
break;
|
||||
|
||||
len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
|
||||
if (len < 0)
|
||||
break;
|
||||
|
||||
len += sizeof(*cur);
|
||||
}
|
||||
|
||||
if (nvme_multi_css(ctrl) && !csi_seen) {
|
||||
dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
|
||||
nsid);
|
||||
status = -EINVAL;
|
||||
}
|
||||
|
||||
free_data:
|
||||
kfree(data);
|
||||
return status;
|
||||
}
|
||||
|
||||
static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
|
||||
struct nvme_ns_ids *ids, struct nvme_id_ns **id)
|
||||
{
|
||||
struct nvme_command c = { };
|
||||
int error;
|
||||
|
||||
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
|
||||
c.identify.opcode = nvme_admin_identify;
|
||||
c.identify.nsid = cpu_to_le32(nsid);
|
||||
c.identify.cns = NVME_ID_CNS_NS;
|
||||
|
||||
*id = kmalloc(sizeof(**id), GFP_KERNEL);
|
||||
if (!*id)
|
||||
return -ENOMEM;
|
||||
|
||||
error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
|
||||
if (error) {
|
||||
dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
|
||||
goto out_free_id;
|
||||
}
|
||||
|
||||
error = NVME_SC_INVALID_NS | NVME_SC_DNR;
|
||||
if ((*id)->ncap == 0) /* namespace not allocated or attached */
|
||||
goto out_free_id;
|
||||
|
||||
|
||||
if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
|
||||
dev_info(ctrl->device,
|
||||
"Ignoring bogus Namespace Identifiers\n");
|
||||
} else {
|
||||
if (ctrl->vs >= NVME_VS(1, 1, 0) &&
|
||||
!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
|
||||
memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
|
||||
if (ctrl->vs >= NVME_VS(1, 2, 0) &&
|
||||
!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
|
||||
memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
out_free_id:
|
||||
kfree(*id);
|
||||
return error;
|
||||
}
|
||||
|
||||
static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
|
||||
unsigned int dword11, void *buffer, size_t buflen, u32 *result)
|
||||
{
|
||||
union nvme_result res = { 0 };
|
||||
struct nvme_command c;
|
||||
int ret;
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.features.opcode = op;
|
||||
c.features.fid = cpu_to_le32(fid);
|
||||
c.features.dword11 = cpu_to_le32(dword11);
|
||||
|
||||
ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
|
||||
buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
|
||||
if (ret >= 0 && result)
|
||||
*result = le32_to_cpu(res.u32);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
|
||||
unsigned int dword11, void *buffer, size_t buflen,
|
||||
u32 *result)
|
||||
{
|
||||
return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
|
||||
buflen, result);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_set_features);
|
||||
|
||||
int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
|
||||
unsigned int dword11, void *buffer, size_t buflen,
|
||||
u32 *result)
|
||||
{
|
||||
return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
|
||||
buflen, result);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_get_features);
|
||||
|
||||
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
|
||||
{
|
||||
u32 q_count = (*count - 1) | ((*count - 1) << 16);
|
||||
u32 result;
|
||||
int status, nr_io_queues;
|
||||
|
||||
status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
|
||||
&result);
|
||||
if (status < 0)
|
||||
return status;
|
||||
|
||||
/*
|
||||
* Degraded controllers might return an error when setting the queue
|
||||
* count. We still want to be able to bring them online and offer
|
||||
* access to the admin queue, as that might be only way to fix them up.
|
||||
*/
|
||||
if (status > 0) {
|
||||
dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
|
||||
*count = 0;
|
||||
} else {
|
||||
nr_io_queues = min(result & 0xffff, result >> 16) + 1;
|
||||
*count = min(*count, nr_io_queues);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
|
||||
|
||||
#define NVME_AEN_SUPPORTED \
|
||||
(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
|
||||
NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
|
||||
|
||||
static void nvme_enable_aen(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
|
||||
int status;
|
||||
|
||||
if (!supported_aens)
|
||||
return;
|
||||
|
||||
status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
|
||||
NULL, 0, &result);
|
||||
if (status)
|
||||
dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
|
||||
supported_aens);
|
||||
|
||||
queue_work(nvme_wq, &ctrl->async_event_work);
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert integer values from ioctl structures to user pointers, silently
|
||||
* ignoring the upper bits in the compat case to match behaviour of 32-bit
|
||||
* kernels.
|
||||
*/
|
||||
static void __user *nvme_to_user_ptr(uintptr_t ptrval)
|
||||
{
|
||||
if (in_compat_syscall())
|
||||
ptrval = (compat_uptr_t)ptrval;
|
||||
return (void __user *)ptrval;
|
||||
}
|
||||
|
||||
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
|
||||
{
|
||||
struct nvme_user_io io;
|
||||
struct nvme_command c;
|
||||
unsigned length, meta_len;
|
||||
void __user *metadata;
|
||||
|
||||
if (copy_from_user(&io, uio, sizeof(io)))
|
||||
return -EFAULT;
|
||||
if (io.flags)
|
||||
return -EINVAL;
|
||||
|
||||
switch (io.opcode) {
|
||||
case nvme_cmd_write:
|
||||
case nvme_cmd_read:
|
||||
case nvme_cmd_compare:
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
length = (io.nblocks + 1) << ns->lba_shift;
|
||||
|
||||
if ((io.control & NVME_RW_PRINFO_PRACT) &&
|
||||
ns->ms == sizeof(struct t10_pi_tuple)) {
|
||||
/*
|
||||
* Protection information is stripped/inserted by the
|
||||
* controller.
|
||||
*/
|
||||
if (nvme_to_user_ptr(io.metadata))
|
||||
return -EINVAL;
|
||||
meta_len = 0;
|
||||
metadata = NULL;
|
||||
} else {
|
||||
meta_len = (io.nblocks + 1) * ns->ms;
|
||||
metadata = nvme_to_user_ptr(io.metadata);
|
||||
}
|
||||
|
||||
if (ns->features & NVME_NS_EXT_LBAS) {
|
||||
length += meta_len;
|
||||
meta_len = 0;
|
||||
} else if (meta_len) {
|
||||
if ((io.metadata & 3) || !io.metadata)
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.rw.opcode = io.opcode;
|
||||
c.rw.flags = io.flags;
|
||||
c.rw.nsid = cpu_to_le32(ns->head->ns_id);
|
||||
c.rw.slba = cpu_to_le64(io.slba);
|
||||
c.rw.length = cpu_to_le16(io.nblocks);
|
||||
c.rw.control = cpu_to_le16(io.control);
|
||||
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
|
||||
c.rw.reftag = cpu_to_le32(io.reftag);
|
||||
c.rw.apptag = cpu_to_le16(io.apptag);
|
||||
c.rw.appmask = cpu_to_le16(io.appmask);
|
||||
|
||||
return nvme_submit_user_cmd(ns->queue, &c,
|
||||
nvme_to_user_ptr(io.addr), length,
|
||||
metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
|
||||
}
|
||||
|
||||
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
|
||||
struct nvme_passthru_cmd __user *ucmd)
|
||||
{
|
||||
struct nvme_passthru_cmd cmd;
|
||||
struct nvme_command c;
|
||||
unsigned timeout = 0;
|
||||
u64 result;
|
||||
int status;
|
||||
|
||||
if (!capable(CAP_SYS_ADMIN))
|
||||
return -EACCES;
|
||||
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
|
||||
return -EFAULT;
|
||||
if (cmd.flags)
|
||||
return -EINVAL;
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.common.opcode = cmd.opcode;
|
||||
c.common.flags = cmd.flags;
|
||||
c.common.nsid = cpu_to_le32(cmd.nsid);
|
||||
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
|
||||
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
|
||||
c.common.cdw10 = cpu_to_le32(cmd.cdw10);
|
||||
c.common.cdw11 = cpu_to_le32(cmd.cdw11);
|
||||
c.common.cdw12 = cpu_to_le32(cmd.cdw12);
|
||||
c.common.cdw13 = cpu_to_le32(cmd.cdw13);
|
||||
c.common.cdw14 = cpu_to_le32(cmd.cdw14);
|
||||
c.common.cdw15 = cpu_to_le32(cmd.cdw15);
|
||||
|
||||
if (cmd.timeout_ms)
|
||||
timeout = msecs_to_jiffies(cmd.timeout_ms);
|
||||
|
||||
status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
|
||||
nvme_to_user_ptr(cmd.addr), cmd.data_len,
|
||||
nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
|
||||
0, &result, timeout);
|
||||
|
||||
if (status >= 0) {
|
||||
if (put_user(result, &ucmd->result))
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
|
||||
struct nvme_passthru_cmd64 __user *ucmd)
|
||||
{
|
||||
struct nvme_passthru_cmd64 cmd;
|
||||
struct nvme_command c;
|
||||
unsigned timeout = 0;
|
||||
int status;
|
||||
|
||||
if (!capable(CAP_SYS_ADMIN))
|
||||
return -EACCES;
|
||||
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
|
||||
return -EFAULT;
|
||||
if (cmd.flags)
|
||||
return -EINVAL;
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.common.opcode = cmd.opcode;
|
||||
c.common.flags = cmd.flags;
|
||||
c.common.nsid = cpu_to_le32(cmd.nsid);
|
||||
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
|
||||
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
|
||||
c.common.cdw10 = cpu_to_le32(cmd.cdw10);
|
||||
c.common.cdw11 = cpu_to_le32(cmd.cdw11);
|
||||
c.common.cdw12 = cpu_to_le32(cmd.cdw12);
|
||||
c.common.cdw13 = cpu_to_le32(cmd.cdw13);
|
||||
c.common.cdw14 = cpu_to_le32(cmd.cdw14);
|
||||
c.common.cdw15 = cpu_to_le32(cmd.cdw15);
|
||||
|
||||
if (cmd.timeout_ms)
|
||||
timeout = msecs_to_jiffies(cmd.timeout_ms);
|
||||
|
||||
status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
|
||||
nvme_to_user_ptr(cmd.addr), cmd.data_len,
|
||||
nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
|
||||
0, &cmd.result, timeout);
|
||||
|
||||
if (status >= 0) {
|
||||
if (put_user(cmd.result, &ucmd->result))
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/*
|
||||
* Issue ioctl requests on the first available path. Note that unlike normal
|
||||
* block layer requests we will not retry failed request on another controller.
|
||||
*/
|
||||
struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
|
||||
struct nvme_ns_head **head, int *srcu_idx)
|
||||
{
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
if (disk->fops == &nvme_ns_head_ops) {
|
||||
struct nvme_ns *ns;
|
||||
|
||||
*head = disk->private_data;
|
||||
*srcu_idx = srcu_read_lock(&(*head)->srcu);
|
||||
ns = nvme_find_path(*head);
|
||||
if (!ns)
|
||||
srcu_read_unlock(&(*head)->srcu, *srcu_idx);
|
||||
return ns;
|
||||
}
|
||||
#endif
|
||||
*head = NULL;
|
||||
*srcu_idx = -1;
|
||||
return disk->private_data;
|
||||
}
|
||||
|
||||
void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
|
||||
{
|
||||
if (head)
|
||||
srcu_read_unlock(&head->srcu, idx);
|
||||
}
|
||||
|
||||
static bool is_ctrl_ioctl(unsigned int cmd)
|
||||
{
|
||||
if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
|
||||
return true;
|
||||
if (is_sed_ioctl(cmd))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
|
||||
void __user *argp,
|
||||
struct nvme_ns_head *head,
|
||||
int srcu_idx)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = ns->ctrl;
|
||||
int ret;
|
||||
|
||||
nvme_get_ctrl(ns->ctrl);
|
||||
nvme_put_ns_from_disk(head, srcu_idx);
|
||||
|
||||
switch (cmd) {
|
||||
case NVME_IOCTL_ADMIN_CMD:
|
||||
ret = nvme_user_cmd(ctrl, NULL, argp);
|
||||
break;
|
||||
case NVME_IOCTL_ADMIN64_CMD:
|
||||
ret = nvme_user_cmd64(ctrl, NULL, argp);
|
||||
break;
|
||||
default:
|
||||
ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
|
||||
break;
|
||||
}
|
||||
nvme_put_ctrl(ctrl);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
|
||||
unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
struct nvme_ns_head *head = NULL;
|
||||
void __user *argp = (void __user *)arg;
|
||||
struct nvme_ns *ns;
|
||||
int srcu_idx, ret;
|
||||
|
||||
ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
|
||||
if (unlikely(!ns))
|
||||
return -EWOULDBLOCK;
|
||||
|
||||
/*
|
||||
* Handle ioctls that apply to the controller instead of the namespace
|
||||
* seperately and drop the ns SRCU reference early. This avoids a
|
||||
* deadlock when deleting namespaces using the passthrough interface.
|
||||
*/
|
||||
if (is_ctrl_ioctl(cmd))
|
||||
return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
|
||||
|
||||
switch (cmd) {
|
||||
case NVME_IOCTL_ID:
|
||||
force_successful_syscall_return();
|
||||
ret = ns->head->ns_id;
|
||||
break;
|
||||
case NVME_IOCTL_IO_CMD:
|
||||
ret = nvme_user_cmd(ns->ctrl, ns, argp);
|
||||
break;
|
||||
case NVME_IOCTL_SUBMIT_IO:
|
||||
ret = nvme_submit_io(ns, argp);
|
||||
break;
|
||||
case NVME_IOCTL_IO64_CMD:
|
||||
ret = nvme_user_cmd64(ns->ctrl, ns, argp);
|
||||
break;
|
||||
default:
|
||||
if (ns->ndev)
|
||||
ret = nvme_nvm_ioctl(ns, cmd, arg);
|
||||
else
|
||||
ret = -ENOTTY;
|
||||
}
|
||||
|
||||
nvme_put_ns_from_disk(head, srcu_idx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_COMPAT
|
||||
struct nvme_user_io32 {
|
||||
__u8 opcode;
|
||||
__u8 flags;
|
||||
__u16 control;
|
||||
__u16 nblocks;
|
||||
__u16 rsvd;
|
||||
__u64 metadata;
|
||||
__u64 addr;
|
||||
__u64 slba;
|
||||
__u32 dsmgmt;
|
||||
__u32 reftag;
|
||||
__u16 apptag;
|
||||
__u16 appmask;
|
||||
} __attribute__((__packed__));
|
||||
|
||||
#define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
|
||||
|
||||
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
||||
unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
/*
|
||||
* Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
|
||||
* between 32 bit programs and 64 bit kernel.
|
||||
* The cause is that the results of sizeof(struct nvme_user_io),
|
||||
* which is used to define NVME_IOCTL_SUBMIT_IO,
|
||||
* are not same between 32 bit compiler and 64 bit compiler.
|
||||
* NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
|
||||
* NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
|
||||
* Other IOCTL numbers are same between 32 bit and 64 bit.
|
||||
* So there is nothing to do regarding to other IOCTL numbers.
|
||||
*/
|
||||
if (cmd == NVME_IOCTL_SUBMIT_IO32)
|
||||
return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
|
||||
|
||||
return nvme_ioctl(bdev, mode, cmd, arg);
|
||||
}
|
||||
#else
|
||||
#define nvme_compat_ioctl NULL
|
||||
#endif /* CONFIG_COMPAT */
|
||||
|
||||
static int nvme_open(struct block_device *bdev, fmode_t mode)
|
||||
{
|
||||
struct nvme_ns *ns = bdev->bd_disk->private_data;
|
||||
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
/* should never be called due to GENHD_FL_HIDDEN */
|
||||
if (WARN_ON_ONCE(ns->head->disk))
|
||||
goto fail;
|
||||
#endif
|
||||
if (!kref_get_unless_zero(&ns->kref))
|
||||
goto fail;
|
||||
if (!try_module_get(ns->ctrl->ops->module))
|
||||
goto fail_put_ns;
|
||||
|
||||
return 0;
|
||||
|
||||
fail_put_ns:
|
||||
nvme_put_ns(ns);
|
||||
fail:
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
static void nvme_release(struct gendisk *disk, fmode_t mode)
|
||||
{
|
||||
struct nvme_ns *ns = disk->private_data;
|
||||
|
||||
module_put(ns->ctrl->ops->module);
|
||||
nvme_put_ns(ns);
|
||||
}
|
||||
|
||||
static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
||||
{
|
||||
/* some standard values */
|
||||
geo->heads = 1 << 6;
|
||||
geo->sectors = 1 << 5;
|
||||
geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
||||
static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
|
||||
u32 max_integrity_segments)
|
||||
{
|
||||
struct blk_integrity integrity;
|
||||
|
||||
memset(&integrity, 0, sizeof(integrity));
|
||||
switch (pi_type) {
|
||||
case NVME_NS_DPS_PI_TYPE3:
|
||||
integrity.profile = &t10_pi_type3_crc;
|
||||
integrity.tag_size = sizeof(u16) + sizeof(u32);
|
||||
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
|
||||
break;
|
||||
case NVME_NS_DPS_PI_TYPE1:
|
||||
case NVME_NS_DPS_PI_TYPE2:
|
||||
integrity.profile = &t10_pi_type1_crc;
|
||||
integrity.tag_size = sizeof(u16);
|
||||
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
|
||||
break;
|
||||
default:
|
||||
integrity.profile = NULL;
|
||||
break;
|
||||
}
|
||||
integrity.tuple_size = ms;
|
||||
blk_integrity_register(disk, &integrity);
|
||||
blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
|
||||
}
|
||||
#else
|
||||
static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
|
||||
u32 max_integrity_segments)
|
||||
{
|
||||
}
|
||||
#endif /* CONFIG_BLK_DEV_INTEGRITY */
|
||||
|
||||
static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = ns->ctrl;
|
||||
struct request_queue *queue = disk->queue;
|
||||
u32 size = queue_logical_block_size(queue);
|
||||
|
||||
if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
|
||||
blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
|
||||
return;
|
||||
}
|
||||
|
||||
if (ctrl->nr_streams && ns->sws && ns->sgs)
|
||||
size *= ns->sws * ns->sgs;
|
||||
|
||||
BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
|
||||
NVME_DSM_MAX_RANGES);
|
||||
|
||||
queue->limits.discard_alignment = 0;
|
||||
queue->limits.discard_granularity = size;
|
||||
|
||||
/* If discard is already enabled, don't reset queue limits */
|
||||
if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
|
||||
return;
|
||||
|
||||
blk_queue_max_discard_sectors(queue, UINT_MAX);
|
||||
blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
|
||||
|
||||
if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
|
||||
blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
|
||||
}
|
||||
|
||||
/*
|
||||
* Even though NVMe spec explicitly states that MDTS is not applicable to the
|
||||
* write-zeroes, we are cautious and limit the size to the controllers
|
||||
* max_hw_sectors value, which is based on the MDTS field and possibly other
|
||||
* limiting factors.
|
||||
*/
|
||||
static void nvme_config_write_zeroes(struct request_queue *q,
|
||||
struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
|
||||
!(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
|
||||
blk_queue_max_write_zeroes_sectors(q, ctrl->max_hw_sectors);
|
||||
}
|
||||
|
||||
static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
|
||||
{
|
||||
return !uuid_is_null(&ids->uuid) ||
|
||||
memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
|
||||
memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
|
||||
}
|
||||
|
||||
static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
|
||||
{
|
||||
return uuid_equal(&a->uuid, &b->uuid) &&
|
||||
memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
|
||||
memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
|
||||
a->csi == b->csi;
|
||||
}
|
||||
|
||||
static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
|
||||
u32 *phys_bs, u32 *io_opt)
|
||||
{
|
||||
struct streams_directive_params s;
|
||||
int ret;
|
||||
|
||||
if (!ctrl->nr_streams)
|
||||
return 0;
|
||||
|
||||
ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ns->sws = le32_to_cpu(s.sws);
|
||||
ns->sgs = le16_to_cpu(s.sgs);
|
||||
|
||||
if (ns->sws) {
|
||||
*phys_bs = ns->sws * (1 << ns->lba_shift);
|
||||
if (ns->sgs)
|
||||
*io_opt = *phys_bs * ns->sgs;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = ns->ctrl;
|
||||
|
||||
/*
|
||||
* The PI implementation requires the metadata size to be equal to the
|
||||
* t10 pi tuple size.
|
||||
*/
|
||||
ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
|
||||
if (ns->ms == sizeof(struct t10_pi_tuple))
|
||||
ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
|
||||
else
|
||||
ns->pi_type = 0;
|
||||
|
||||
ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
|
||||
if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
|
||||
return 0;
|
||||
if (ctrl->ops->flags & NVME_F_FABRICS) {
|
||||
/*
|
||||
* The NVMe over Fabrics specification only supports metadata as
|
||||
* part of the extended data LBA. We rely on HCA/HBA support to
|
||||
* remap the separate metadata buffer from the block layer.
|
||||
*/
|
||||
if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
|
||||
return -EINVAL;
|
||||
if (ctrl->max_integrity_segments)
|
||||
ns->features |=
|
||||
(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
|
||||
} else {
|
||||
/*
|
||||
* For PCIe controllers, we can't easily remap the separate
|
||||
* metadata buffer from the block layer and thus require a
|
||||
* separate metadata buffer for block layer metadata/PI support.
|
||||
* We allow extended LBAs for the passthrough interface, though.
|
||||
*/
|
||||
if (id->flbas & NVME_NS_FLBAS_META_EXT)
|
||||
ns->features |= NVME_NS_EXT_LBAS;
|
||||
else
|
||||
ns->features |= NVME_NS_METADATA_SUPPORTED;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
|
||||
struct request_queue *q)
|
||||
{
|
||||
bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
|
||||
|
||||
if (ctrl->max_hw_sectors) {
|
||||
u32 max_segments =
|
||||
(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
|
||||
|
||||
max_segments = min_not_zero(max_segments, ctrl->max_segments);
|
||||
blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
|
||||
blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
|
||||
}
|
||||
blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
|
||||
blk_queue_dma_alignment(q, 3);
|
||||
blk_queue_write_cache(q, vwc, vwc);
|
||||
}
|
||||
|
||||
static void nvme_update_disk_info(struct gendisk *disk,
|
||||
struct nvme_ns *ns, struct nvme_id_ns *id)
|
||||
{
|
||||
sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
|
||||
unsigned short bs = 1 << ns->lba_shift;
|
||||
u32 atomic_bs, phys_bs, io_opt = 0;
|
||||
|
||||
/*
|
||||
* The block layer can't support LBA sizes larger than the page size
|
||||
* yet, so catch this early and don't allow block I/O.
|
||||
*/
|
||||
if (ns->lba_shift > PAGE_SHIFT) {
|
||||
capacity = 0;
|
||||
bs = (1 << 9);
|
||||
}
|
||||
|
||||
blk_integrity_unregister(disk);
|
||||
|
||||
atomic_bs = phys_bs = bs;
|
||||
nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
|
||||
if (id->nabo == 0) {
|
||||
/*
|
||||
* Bit 1 indicates whether NAWUPF is defined for this namespace
|
||||
* and whether it should be used instead of AWUPF. If NAWUPF ==
|
||||
* 0 then AWUPF must be used instead.
|
||||
*/
|
||||
if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
|
||||
atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
|
||||
else
|
||||
atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
|
||||
}
|
||||
|
||||
if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
|
||||
/* NPWG = Namespace Preferred Write Granularity */
|
||||
phys_bs = bs * (1 + le16_to_cpu(id->npwg));
|
||||
/* NOWS = Namespace Optimal Write Size */
|
||||
io_opt = bs * (1 + le16_to_cpu(id->nows));
|
||||
}
|
||||
|
||||
blk_queue_logical_block_size(disk->queue, bs);
|
||||
/*
|
||||
* Linux filesystems assume writing a single physical block is
|
||||
* an atomic operation. Hence limit the physical block size to the
|
||||
* value of the Atomic Write Unit Power Fail parameter.
|
||||
*/
|
||||
blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
|
||||
blk_queue_io_min(disk->queue, phys_bs);
|
||||
blk_queue_io_opt(disk->queue, io_opt);
|
||||
|
||||
/*
|
||||
* Register a metadata profile for PI, or the plain non-integrity NVMe
|
||||
* metadata masquerading as Type 0 if supported, otherwise reject block
|
||||
* I/O to namespaces with metadata except when the namespace supports
|
||||
* PI, as it can strip/insert in that case.
|
||||
*/
|
||||
if (ns->ms) {
|
||||
if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
|
||||
(ns->features & NVME_NS_METADATA_SUPPORTED))
|
||||
nvme_init_integrity(disk, ns->ms, ns->pi_type,
|
||||
ns->ctrl->max_integrity_segments);
|
||||
else if (!nvme_ns_has_pi(ns))
|
||||
capacity = 0;
|
||||
}
|
||||
|
||||
set_capacity_revalidate_and_notify(disk, capacity, false);
|
||||
|
||||
nvme_config_discard(disk, ns);
|
||||
nvme_config_write_zeroes(disk->queue, ns->ctrl);
|
||||
|
||||
if (id->nsattr & NVME_NS_ATTR_RO)
|
||||
set_disk_ro(disk, true);
|
||||
}
|
||||
|
||||
static inline bool nvme_first_scan(struct gendisk *disk)
|
||||
{
|
||||
/* nvme_alloc_ns() scans the disk prior to adding it */
|
||||
return !(disk->flags & GENHD_FL_UP);
|
||||
}
|
||||
|
||||
static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = ns->ctrl;
|
||||
u32 iob;
|
||||
|
||||
if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
|
||||
is_power_of_2(ctrl->max_hw_sectors))
|
||||
iob = ctrl->max_hw_sectors;
|
||||
else
|
||||
iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
|
||||
|
||||
if (!iob)
|
||||
return;
|
||||
|
||||
if (!is_power_of_2(iob)) {
|
||||
if (nvme_first_scan(ns->disk))
|
||||
pr_warn("%s: ignoring unaligned IO boundary:%u\n",
|
||||
ns->disk->disk_name, iob);
|
||||
return;
|
||||
}
|
||||
|
||||
if (blk_queue_is_zoned(ns->disk->queue)) {
|
||||
if (nvme_first_scan(ns->disk))
|
||||
pr_warn("%s: ignoring zoned namespace IO boundary\n",
|
||||
ns->disk->disk_name);
|
||||
return;
|
||||
}
|
||||
|
||||
blk_queue_chunk_sectors(ns->queue, iob);
|
||||
}
|
||||
|
||||
static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
|
||||
{
|
||||
unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
|
||||
int ret;
|
||||
|
||||
blk_mq_freeze_queue(ns->disk->queue);
|
||||
ns->lba_shift = id->lbaf[lbaf].ds;
|
||||
nvme_set_queue_limits(ns->ctrl, ns->queue);
|
||||
|
||||
if (ns->head->ids.csi == NVME_CSI_ZNS) {
|
||||
ret = nvme_update_zone_info(ns, lbaf);
|
||||
if (ret)
|
||||
goto out_unfreeze;
|
||||
}
|
||||
|
||||
ret = nvme_configure_metadata(ns, id);
|
||||
if (ret)
|
||||
goto out_unfreeze;
|
||||
nvme_set_chunk_sectors(ns, id);
|
||||
nvme_update_disk_info(ns->disk, ns, id);
|
||||
blk_mq_unfreeze_queue(ns->disk->queue);
|
||||
|
||||
if (blk_queue_is_zoned(ns->queue)) {
|
||||
ret = nvme_revalidate_zones(ns);
|
||||
if (ret && !nvme_first_scan(ns->disk))
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
if (ns->head->disk) {
|
||||
blk_mq_freeze_queue(ns->head->disk->queue);
|
||||
nvme_update_disk_info(ns->head->disk, ns, id);
|
||||
blk_stack_limits(&ns->head->disk->queue->limits,
|
||||
&ns->queue->limits, 0);
|
||||
blk_queue_update_readahead(ns->head->disk->queue);
|
||||
nvme_update_bdev_size(ns->head->disk);
|
||||
blk_mq_unfreeze_queue(ns->head->disk->queue);
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
|
||||
out_unfreeze:
|
||||
blk_mq_unfreeze_queue(ns->disk->queue);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static char nvme_pr_type(enum pr_type type)
|
||||
{
|
||||
switch (type) {
|
||||
case PR_WRITE_EXCLUSIVE:
|
||||
return 1;
|
||||
case PR_EXCLUSIVE_ACCESS:
|
||||
return 2;
|
||||
case PR_WRITE_EXCLUSIVE_REG_ONLY:
|
||||
return 3;
|
||||
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
|
||||
return 4;
|
||||
case PR_WRITE_EXCLUSIVE_ALL_REGS:
|
||||
return 5;
|
||||
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
|
||||
return 6;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
|
||||
u64 key, u64 sa_key, u8 op)
|
||||
{
|
||||
struct nvme_ns_head *head = NULL;
|
||||
struct nvme_ns *ns;
|
||||
struct nvme_command c;
|
||||
int srcu_idx, ret;
|
||||
u8 data[16] = { 0, };
|
||||
|
||||
ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
|
||||
if (unlikely(!ns))
|
||||
return -EWOULDBLOCK;
|
||||
|
||||
put_unaligned_le64(key, &data[0]);
|
||||
put_unaligned_le64(sa_key, &data[8]);
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.common.opcode = op;
|
||||
c.common.nsid = cpu_to_le32(ns->head->ns_id);
|
||||
c.common.cdw10 = cpu_to_le32(cdw10);
|
||||
|
||||
ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
|
||||
nvme_put_ns_from_disk(head, srcu_idx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int nvme_pr_register(struct block_device *bdev, u64 old,
|
||||
u64 new, unsigned flags)
|
||||
{
|
||||
u32 cdw10;
|
||||
|
||||
if (flags & ~PR_FL_IGNORE_KEY)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
cdw10 = old ? 2 : 0;
|
||||
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
|
||||
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
|
||||
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
|
||||
}
|
||||
|
||||
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
|
||||
enum pr_type type, unsigned flags)
|
||||
{
|
||||
u32 cdw10;
|
||||
|
||||
if (flags & ~PR_FL_IGNORE_KEY)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
cdw10 = nvme_pr_type(type) << 8;
|
||||
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
|
||||
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
|
||||
}
|
||||
|
||||
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
|
||||
enum pr_type type, bool abort)
|
||||
{
|
||||
u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
|
||||
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
|
||||
}
|
||||
|
||||
static int nvme_pr_clear(struct block_device *bdev, u64 key)
|
||||
{
|
||||
u32 cdw10 = 1 | (key ? 1 << 3 : 0);
|
||||
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
|
||||
}
|
||||
|
||||
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
|
||||
{
|
||||
u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
|
||||
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
|
||||
}
|
||||
|
||||
static const struct pr_ops nvme_pr_ops = {
|
||||
.pr_register = nvme_pr_register,
|
||||
.pr_reserve = nvme_pr_reserve,
|
||||
.pr_release = nvme_pr_release,
|
||||
.pr_preempt = nvme_pr_preempt,
|
||||
.pr_clear = nvme_pr_clear,
|
||||
};
|
||||
|
||||
#ifdef CONFIG_BLK_SED_OPAL
|
||||
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
|
||||
bool send)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = data;
|
||||
struct nvme_command cmd;
|
||||
|
||||
memset(&cmd, 0, sizeof(cmd));
|
||||
if (send)
|
||||
cmd.common.opcode = nvme_admin_security_send;
|
||||
else
|
||||
cmd.common.opcode = nvme_admin_security_recv;
|
||||
cmd.common.nsid = 0;
|
||||
cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
|
||||
cmd.common.cdw11 = cpu_to_le32(len);
|
||||
|
||||
return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
|
||||
ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_sec_submit);
|
||||
#endif /* CONFIG_BLK_SED_OPAL */
|
||||
|
||||
static const struct block_device_operations nvme_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.ioctl = nvme_ioctl,
|
||||
.compat_ioctl = nvme_compat_ioctl,
|
||||
.open = nvme_open,
|
||||
.release = nvme_release,
|
||||
.getgeo = nvme_getgeo,
|
||||
.report_zones = nvme_report_zones,
|
||||
.pr_ops = &nvme_pr_ops,
|
||||
};
|
||||
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
|
||||
{
|
||||
struct nvme_ns_head *head = bdev->bd_disk->private_data;
|
||||
|
||||
if (!kref_get_unless_zero(&head->ref))
|
||||
return -ENXIO;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
|
||||
{
|
||||
nvme_put_ns_head(disk->private_data);
|
||||
}
|
||||
|
||||
const struct block_device_operations nvme_ns_head_ops = {
|
||||
.owner = THIS_MODULE,
|
||||
.submit_bio = nvme_ns_head_submit_bio,
|
||||
.open = nvme_ns_head_open,
|
||||
.release = nvme_ns_head_release,
|
||||
.ioctl = nvme_ioctl,
|
||||
.compat_ioctl = nvme_compat_ioctl,
|
||||
.getgeo = nvme_getgeo,
|
||||
.report_zones = nvme_report_zones,
|
||||
.pr_ops = &nvme_pr_ops,
|
||||
};
|
||||
#endif /* CONFIG_NVME_MULTIPATH */
|
||||
|
||||
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
|
||||
{
|
||||
unsigned long timeout =
|
||||
((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
|
||||
u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
|
||||
int ret;
|
||||
|
||||
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
|
||||
if (csts == ~0)
|
||||
return -ENODEV;
|
||||
if ((csts & NVME_CSTS_RDY) == bit)
|
||||
break;
|
||||
|
||||
usleep_range(1000, 2000);
|
||||
if (fatal_signal_pending(current))
|
||||
return -EINTR;
|
||||
if (time_after(jiffies, timeout)) {
|
||||
dev_err(ctrl->device,
|
||||
"Device not ready; aborting %s, CSTS=0x%x\n",
|
||||
enabled ? "initialisation" : "reset", csts);
|
||||
return -ENODEV;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* If the device has been passed off to us in an enabled state, just clear
|
||||
* the enabled bit. The spec says we should set the 'shutdown notification
|
||||
* bits', but doing so may cause the device to complete commands to the
|
||||
* admin queue ... and we don't know what memory that might be pointing at!
|
||||
*/
|
||||
int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
|
||||
ctrl->ctrl_config &= ~NVME_CC_ENABLE;
|
||||
|
||||
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
|
||||
msleep(NVME_QUIRK_DELAY_AMOUNT);
|
||||
|
||||
return nvme_wait_ready(ctrl, ctrl->cap, false);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
|
||||
|
||||
int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
unsigned dev_page_min;
|
||||
int ret;
|
||||
|
||||
ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
|
||||
if (ret) {
|
||||
dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
|
||||
return ret;
|
||||
}
|
||||
dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
|
||||
|
||||
if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
|
||||
dev_err(ctrl->device,
|
||||
"Minimum device page size %u too large for host (%u)\n",
|
||||
1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
|
||||
ctrl->ctrl_config = NVME_CC_CSS_CSI;
|
||||
else
|
||||
ctrl->ctrl_config = NVME_CC_CSS_NVM;
|
||||
ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
|
||||
ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
|
||||
ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
|
||||
ctrl->ctrl_config |= NVME_CC_ENABLE;
|
||||
|
||||
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
||||
if (ret)
|
||||
return ret;
|
||||
return nvme_wait_ready(ctrl, ctrl->cap, true);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
|
||||
|
||||
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
|
||||
u32 csts;
|
||||
int ret;
|
||||
|
||||
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
|
||||
ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
|
||||
|
||||
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
|
||||
if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
|
||||
break;
|
||||
|
||||
msleep(100);
|
||||
if (fatal_signal_pending(current))
|
||||
return -EINTR;
|
||||
if (time_after(jiffies, timeout)) {
|
||||
dev_err(ctrl->device,
|
||||
"Device shutdown incomplete; abort shutdown\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
|
||||
|
||||
static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
__le64 ts;
|
||||
int ret;
|
||||
|
||||
if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
|
||||
return 0;
|
||||
|
||||
ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
|
||||
ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
|
||||
NULL);
|
||||
if (ret)
|
||||
dev_warn_once(ctrl->device,
|
||||
"could not set timestamp (%d)\n", ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int nvme_configure_acre(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_feat_host_behavior *host;
|
||||
int ret;
|
||||
|
||||
/* Don't bother enabling the feature if retry delay is not reported */
|
||||
if (!ctrl->crdt[0])
|
||||
return 0;
|
||||
|
||||
host = kzalloc(sizeof(*host), GFP_KERNEL);
|
||||
if (!host)
|
||||
return 0;
|
||||
|
||||
host->acre = NVME_ENABLE_ACRE;
|
||||
ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
|
||||
host, sizeof(*host), NULL);
|
||||
kfree(host);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int nvme_configure_apst(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
/*
|
||||
* APST (Autonomous Power State Transition) lets us program a
|
||||
* table of power state transitions that the controller will
|
||||
* perform automatically. We configure it with a simple
|
||||
* heuristic: we are willing to spend at most 2% of the time
|
||||
* transitioning between power states. Therefore, when running
|
||||
* in any given state, we will enter the next lower-power
|
||||
* non-operational state after waiting 50 * (enlat + exlat)
|
||||
* microseconds, as long as that state's exit latency is under
|
||||
* the requested maximum latency.
|
||||
*
|
||||
* We will not autonomously enter any non-operational state for
|
||||
* which the total latency exceeds ps_max_latency_us. Users
|
||||
* can set ps_max_latency_us to zero to turn off APST.
|
||||
*/
|
||||
|
||||
unsigned apste;
|
||||
struct nvme_feat_auto_pst *table;
|
||||
u64 max_lat_us = 0;
|
||||
int max_ps = -1;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* If APST isn't supported or if we haven't been initialized yet,
|
||||
* then don't do anything.
|
||||
*/
|
||||
if (!ctrl->apsta)
|
||||
return 0;
|
||||
|
||||
if (ctrl->npss > 31) {
|
||||
dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
table = kzalloc(sizeof(*table), GFP_KERNEL);
|
||||
if (!table)
|
||||
return 0;
|
||||
|
||||
if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
|
||||
/* Turn off APST. */
|
||||
apste = 0;
|
||||
dev_dbg(ctrl->device, "APST disabled\n");
|
||||
} else {
|
||||
__le64 target = cpu_to_le64(0);
|
||||
int state;
|
||||
|
||||
/*
|
||||
* Walk through all states from lowest- to highest-power.
|
||||
* According to the spec, lower-numbered states use more
|
||||
* power. NPSS, despite the name, is the index of the
|
||||
* lowest-power state, not the number of states.
|
||||
*/
|
||||
for (state = (int)ctrl->npss; state >= 0; state--) {
|
||||
u64 total_latency_us, exit_latency_us, transition_ms;
|
||||
|
||||
if (target)
|
||||
table->entries[state] = target;
|
||||
|
||||
/*
|
||||
* Don't allow transitions to the deepest state
|
||||
* if it's quirked off.
|
||||
*/
|
||||
if (state == ctrl->npss &&
|
||||
(ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Is this state a useful non-operational state for
|
||||
* higher-power states to autonomously transition to?
|
||||
*/
|
||||
if (!(ctrl->psd[state].flags &
|
||||
NVME_PS_FLAGS_NON_OP_STATE))
|
||||
continue;
|
||||
|
||||
exit_latency_us =
|
||||
(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
|
||||
if (exit_latency_us > ctrl->ps_max_latency_us)
|
||||
continue;
|
||||
|
||||
total_latency_us =
|
||||
exit_latency_us +
|
||||
le32_to_cpu(ctrl->psd[state].entry_lat);
|
||||
|
||||
/*
|
||||
* This state is good. Use it as the APST idle
|
||||
* target for higher power states.
|
||||
*/
|
||||
transition_ms = total_latency_us + 19;
|
||||
do_div(transition_ms, 20);
|
||||
if (transition_ms > (1 << 24) - 1)
|
||||
transition_ms = (1 << 24) - 1;
|
||||
|
||||
target = cpu_to_le64((state << 3) |
|
||||
(transition_ms << 8));
|
||||
|
||||
if (max_ps == -1)
|
||||
max_ps = state;
|
||||
|
||||
if (total_latency_us > max_lat_us)
|
||||
max_lat_us = total_latency_us;
|
||||
}
|
||||
|
||||
apste = 1;
|
||||
|
||||
if (max_ps == -1) {
|
||||
dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
|
||||
} else {
|
||||
dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
|
||||
max_ps, max_lat_us, (int)sizeof(*table), table);
|
||||
}
|
||||
}
|
||||
|
||||
ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
|
||||
table, sizeof(*table), NULL);
|
||||
if (ret)
|
||||
dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
|
||||
|
||||
kfree(table);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void nvme_set_latency_tolerance(struct device *dev, s32 val)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
u64 latency;
|
||||
|
||||
switch (val) {
|
||||
case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
|
||||
case PM_QOS_LATENCY_ANY:
|
||||
latency = U64_MAX;
|
||||
break;
|
||||
|
||||
default:
|
||||
latency = val;
|
||||
}
|
||||
|
||||
if (ctrl->ps_max_latency_us != latency) {
|
||||
ctrl->ps_max_latency_us = latency;
|
||||
if (ctrl->state == NVME_CTRL_LIVE)
|
||||
nvme_configure_apst(ctrl);
|
||||
}
|
||||
}
|
||||
|
||||
struct nvme_core_quirk_entry {
|
||||
/*
|
||||
* NVMe model and firmware strings are padded with spaces. For
|
||||
* simplicity, strings in the quirk table are padded with NULLs
|
||||
* instead.
|
||||
*/
|
||||
u16 vid;
|
||||
const char *mn;
|
||||
const char *fr;
|
||||
unsigned long quirks;
|
||||
};
|
||||
|
||||
static const struct nvme_core_quirk_entry core_quirks[] = {
|
||||
{
|
||||
/*
|
||||
* This Toshiba device seems to die using any APST states. See:
|
||||
* https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
|
||||
*/
|
||||
.vid = 0x1179,
|
||||
.mn = "THNSF5256GPUK TOSHIBA",
|
||||
.quirks = NVME_QUIRK_NO_APST,
|
||||
},
|
||||
{
|
||||
/*
|
||||
* This LiteON CL1-3D*-Q11 firmware version has a race
|
||||
* condition associated with actions related to suspend to idle
|
||||
* LiteON has resolved the problem in future firmware
|
||||
*/
|
||||
.vid = 0x14a4,
|
||||
.fr = "22301111",
|
||||
.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
|
||||
},
|
||||
{
|
||||
/*
|
||||
* This Kioxia CD6-V Series / HPE PE8030 device times out and
|
||||
* aborts I/O during any load, but more easily reproducible
|
||||
* with discards (fstrim).
|
||||
*
|
||||
* The device is left in a state where it is also not possible
|
||||
* to use "nvme set-feature" to disable APST, but booting with
|
||||
* nvme_core.default_ps_max_latency=0 works.
|
||||
*/
|
||||
.vid = 0x1e0f,
|
||||
.mn = "KCD6XVUL6T40",
|
||||
.quirks = NVME_QUIRK_NO_APST,
|
||||
},
|
||||
{
|
||||
/*
|
||||
* The external Samsung X5 SSD fails initialization without a
|
||||
* delay before checking if it is ready and has a whole set of
|
||||
* other problems. To make this even more interesting, it
|
||||
* shares the PCI ID with internal Samsung 970 Evo Plus that
|
||||
* does not need or want these quirks.
|
||||
*/
|
||||
.vid = 0x144d,
|
||||
.mn = "Samsung Portable SSD X5",
|
||||
.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
|
||||
NVME_QUIRK_NO_DEEPEST_PS |
|
||||
NVME_QUIRK_IGNORE_DEV_SUBNQN,
|
||||
}
|
||||
};
|
||||
|
||||
/* match is null-terminated but idstr is space-padded. */
|
||||
static bool string_matches(const char *idstr, const char *match, size_t len)
|
||||
{
|
||||
size_t matchlen;
|
||||
|
||||
if (!match)
|
||||
return true;
|
||||
|
||||
matchlen = strlen(match);
|
||||
WARN_ON_ONCE(matchlen > len);
|
||||
|
||||
if (memcmp(idstr, match, matchlen))
|
||||
return false;
|
||||
|
||||
for (; matchlen < len; matchlen++)
|
||||
if (idstr[matchlen] != ' ')
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool quirk_matches(const struct nvme_id_ctrl *id,
|
||||
const struct nvme_core_quirk_entry *q)
|
||||
{
|
||||
return q->vid == le16_to_cpu(id->vid) &&
|
||||
string_matches(id->mn, q->mn, sizeof(id->mn)) &&
|
||||
string_matches(id->fr, q->fr, sizeof(id->fr));
|
||||
}
|
||||
|
||||
static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
|
||||
struct nvme_id_ctrl *id)
|
||||
{
|
||||
size_t nqnlen;
|
||||
int off;
|
||||
|
||||
if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
|
||||
nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
|
||||
if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
|
||||
strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
|
||||
return;
|
||||
}
|
||||
|
||||
if (ctrl->vs >= NVME_VS(1, 2, 1))
|
||||
dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
|
||||
}
|
||||
|
||||
/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
|
||||
off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
|
||||
"nqn.2014.08.org.nvmexpress:%04x%04x",
|
||||
le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
|
||||
memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
|
||||
off += sizeof(id->sn);
|
||||
memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
|
||||
off += sizeof(id->mn);
|
||||
memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
|
||||
}
|
||||
|
||||
static void nvme_release_subsystem(struct device *dev)
|
||||
{
|
||||
struct nvme_subsystem *subsys =
|
||||
container_of(dev, struct nvme_subsystem, dev);
|
||||
|
||||
if (subsys->instance >= 0)
|
||||
ida_simple_remove(&nvme_instance_ida, subsys->instance);
|
||||
kfree(subsys);
|
||||
}
|
||||
|
||||
static void nvme_destroy_subsystem(struct kref *ref)
|
||||
{
|
||||
struct nvme_subsystem *subsys =
|
||||
container_of(ref, struct nvme_subsystem, ref);
|
||||
|
||||
mutex_lock(&nvme_subsystems_lock);
|
||||
list_del(&subsys->entry);
|
||||
mutex_unlock(&nvme_subsystems_lock);
|
||||
|
||||
ida_destroy(&subsys->ns_ida);
|
||||
device_del(&subsys->dev);
|
||||
put_device(&subsys->dev);
|
||||
}
|
||||
|
||||
static void nvme_put_subsystem(struct nvme_subsystem *subsys)
|
||||
{
|
||||
kref_put(&subsys->ref, nvme_destroy_subsystem);
|
||||
}
|
||||
|
||||
static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
|
||||
{
|
||||
struct nvme_subsystem *subsys;
|
||||
|
||||
lockdep_assert_held(&nvme_subsystems_lock);
|
||||
|
||||
/*
|
||||
* Fail matches for discovery subsystems. This results
|
||||
* in each discovery controller bound to a unique subsystem.
|
||||
* This avoids issues with validating controller values
|
||||
* that can only be true when there is a single unique subsystem.
|
||||
* There may be multiple and completely independent entities
|
||||
* that provide discovery controllers.
|
||||
*/
|
||||
if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
|
||||
return NULL;
|
||||
|
||||
list_for_each_entry(subsys, &nvme_subsystems, entry) {
|
||||
if (strcmp(subsys->subnqn, subsysnqn))
|
||||
continue;
|
||||
if (!kref_get_unless_zero(&subsys->ref))
|
||||
continue;
|
||||
return subsys;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#define SUBSYS_ATTR_RO(_name, _mode, _show) \
|
||||
struct device_attribute subsys_attr_##_name = \
|
||||
__ATTR(_name, _mode, _show, NULL)
|
||||
|
||||
static ssize_t nvme_subsys_show_nqn(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_subsystem *subsys =
|
||||
container_of(dev, struct nvme_subsystem, dev);
|
||||
|
||||
return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
|
||||
}
|
||||
static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
|
||||
|
||||
#define nvme_subsys_show_str_function(field) \
|
||||
static ssize_t subsys_##field##_show(struct device *dev, \
|
||||
struct device_attribute *attr, char *buf) \
|
||||
{ \
|
||||
struct nvme_subsystem *subsys = \
|
||||
container_of(dev, struct nvme_subsystem, dev); \
|
||||
return sysfs_emit(buf, "%.*s\n", \
|
||||
(int)sizeof(subsys->field), subsys->field); \
|
||||
} \
|
||||
static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
|
||||
|
||||
nvme_subsys_show_str_function(model);
|
||||
nvme_subsys_show_str_function(serial);
|
||||
nvme_subsys_show_str_function(firmware_rev);
|
||||
|
||||
static struct attribute *nvme_subsys_attrs[] = {
|
||||
&subsys_attr_model.attr,
|
||||
&subsys_attr_serial.attr,
|
||||
&subsys_attr_firmware_rev.attr,
|
||||
&subsys_attr_subsysnqn.attr,
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
&subsys_attr_iopolicy.attr,
|
||||
#endif
|
||||
NULL,
|
||||
};
|
||||
|
||||
static struct attribute_group nvme_subsys_attrs_group = {
|
||||
.attrs = nvme_subsys_attrs,
|
||||
};
|
||||
|
||||
static const struct attribute_group *nvme_subsys_attrs_groups[] = {
|
||||
&nvme_subsys_attrs_group,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
return ctrl->opts && ctrl->opts->discovery_nqn;
|
||||
}
|
||||
|
||||
static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
|
||||
struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
|
||||
{
|
||||
struct nvme_ctrl *tmp;
|
||||
|
||||
lockdep_assert_held(&nvme_subsystems_lock);
|
||||
|
||||
list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
|
||||
if (nvme_state_terminal(tmp))
|
||||
continue;
|
||||
|
||||
if (tmp->cntlid == ctrl->cntlid) {
|
||||
dev_err(ctrl->device,
|
||||
"Duplicate cntlid %u with %s, rejecting\n",
|
||||
ctrl->cntlid, dev_name(tmp->device));
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
|
||||
nvme_discovery_ctrl(ctrl))
|
||||
continue;
|
||||
|
||||
dev_err(ctrl->device,
|
||||
"Subsystem does not support multiple controllers\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
|
||||
{
|
||||
struct nvme_subsystem *subsys, *found;
|
||||
int ret;
|
||||
|
||||
subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
|
||||
if (!subsys)
|
||||
return -ENOMEM;
|
||||
|
||||
subsys->instance = -1;
|
||||
mutex_init(&subsys->lock);
|
||||
kref_init(&subsys->ref);
|
||||
INIT_LIST_HEAD(&subsys->ctrls);
|
||||
INIT_LIST_HEAD(&subsys->nsheads);
|
||||
nvme_init_subnqn(subsys, ctrl, id);
|
||||
memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
|
||||
memcpy(subsys->model, id->mn, sizeof(subsys->model));
|
||||
memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
|
||||
subsys->vendor_id = le16_to_cpu(id->vid);
|
||||
subsys->cmic = id->cmic;
|
||||
subsys->awupf = le16_to_cpu(id->awupf);
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
subsys->iopolicy = NVME_IOPOLICY_NUMA;
|
||||
#endif
|
||||
|
||||
subsys->dev.class = nvme_subsys_class;
|
||||
subsys->dev.release = nvme_release_subsystem;
|
||||
subsys->dev.groups = nvme_subsys_attrs_groups;
|
||||
dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
|
||||
device_initialize(&subsys->dev);
|
||||
|
||||
mutex_lock(&nvme_subsystems_lock);
|
||||
found = __nvme_find_get_subsystem(subsys->subnqn);
|
||||
if (found) {
|
||||
put_device(&subsys->dev);
|
||||
subsys = found;
|
||||
|
||||
if (!nvme_validate_cntlid(subsys, ctrl, id)) {
|
||||
ret = -EINVAL;
|
||||
goto out_put_subsystem;
|
||||
}
|
||||
} else {
|
||||
ret = device_add(&subsys->dev);
|
||||
if (ret) {
|
||||
dev_err(ctrl->device,
|
||||
"failed to register subsystem device.\n");
|
||||
put_device(&subsys->dev);
|
||||
goto out_unlock;
|
||||
}
|
||||
ida_init(&subsys->ns_ida);
|
||||
list_add_tail(&subsys->entry, &nvme_subsystems);
|
||||
}
|
||||
|
||||
ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
|
||||
dev_name(ctrl->device));
|
||||
if (ret) {
|
||||
dev_err(ctrl->device,
|
||||
"failed to create sysfs link from subsystem.\n");
|
||||
goto out_put_subsystem;
|
||||
}
|
||||
|
||||
if (!found)
|
||||
subsys->instance = ctrl->instance;
|
||||
ctrl->subsys = subsys;
|
||||
list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
|
||||
mutex_unlock(&nvme_subsystems_lock);
|
||||
return 0;
|
||||
|
||||
out_put_subsystem:
|
||||
nvme_put_subsystem(subsys);
|
||||
out_unlock:
|
||||
mutex_unlock(&nvme_subsystems_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
|
||||
void *log, size_t size, u64 offset)
|
||||
{
|
||||
struct nvme_command c = { };
|
||||
u32 dwlen = nvme_bytes_to_numd(size);
|
||||
|
||||
c.get_log_page.opcode = nvme_admin_get_log_page;
|
||||
c.get_log_page.nsid = cpu_to_le32(nsid);
|
||||
c.get_log_page.lid = log_page;
|
||||
c.get_log_page.lsp = lsp;
|
||||
c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
|
||||
c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
|
||||
c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
|
||||
c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
|
||||
c.get_log_page.csi = csi;
|
||||
|
||||
return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
|
||||
}
|
||||
|
||||
static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
|
||||
struct nvme_effects_log **log)
|
||||
{
|
||||
struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
|
||||
int ret;
|
||||
|
||||
if (cel)
|
||||
goto out;
|
||||
|
||||
cel = kzalloc(sizeof(*cel), GFP_KERNEL);
|
||||
if (!cel)
|
||||
return -ENOMEM;
|
||||
|
||||
ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
|
||||
cel, sizeof(*cel), 0);
|
||||
if (ret) {
|
||||
kfree(cel);
|
||||
return ret;
|
||||
}
|
||||
|
||||
xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
|
||||
out:
|
||||
*log = cel;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize the cached copies of the Identify data and various controller
|
||||
* register in our nvme_ctrl structure. This should be called as soon as
|
||||
* the admin queue is fully up and running.
|
||||
*/
|
||||
int nvme_init_identify(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_id_ctrl *id;
|
||||
int ret, page_shift;
|
||||
u32 max_hw_sectors;
|
||||
bool prev_apst_enabled;
|
||||
|
||||
ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
|
||||
if (ret) {
|
||||
dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
|
||||
return ret;
|
||||
}
|
||||
page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
|
||||
ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
|
||||
|
||||
if (ctrl->vs >= NVME_VS(1, 1, 0))
|
||||
ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
|
||||
|
||||
ret = nvme_identify_ctrl(ctrl, &id);
|
||||
if (ret) {
|
||||
dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
|
||||
ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
|
||||
if (ret < 0)
|
||||
goto out_free;
|
||||
}
|
||||
|
||||
if (!(ctrl->ops->flags & NVME_F_FABRICS))
|
||||
ctrl->cntlid = le16_to_cpu(id->cntlid);
|
||||
|
||||
if (!ctrl->identified) {
|
||||
int i;
|
||||
|
||||
ret = nvme_init_subsystem(ctrl, id);
|
||||
if (ret)
|
||||
goto out_free;
|
||||
|
||||
/*
|
||||
* Check for quirks. Quirk can depend on firmware version,
|
||||
* so, in principle, the set of quirks present can change
|
||||
* across a reset. As a possible future enhancement, we
|
||||
* could re-scan for quirks every time we reinitialize
|
||||
* the device, but we'd have to make sure that the driver
|
||||
* behaves intelligently if the quirks change.
|
||||
*/
|
||||
for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
|
||||
if (quirk_matches(id, &core_quirks[i]))
|
||||
ctrl->quirks |= core_quirks[i].quirks;
|
||||
}
|
||||
}
|
||||
|
||||
if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
|
||||
dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
|
||||
ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
|
||||
}
|
||||
|
||||
ctrl->crdt[0] = le16_to_cpu(id->crdt1);
|
||||
ctrl->crdt[1] = le16_to_cpu(id->crdt2);
|
||||
ctrl->crdt[2] = le16_to_cpu(id->crdt3);
|
||||
|
||||
ctrl->oacs = le16_to_cpu(id->oacs);
|
||||
ctrl->oncs = le16_to_cpu(id->oncs);
|
||||
ctrl->mtfa = le16_to_cpu(id->mtfa);
|
||||
ctrl->oaes = le32_to_cpu(id->oaes);
|
||||
ctrl->wctemp = le16_to_cpu(id->wctemp);
|
||||
ctrl->cctemp = le16_to_cpu(id->cctemp);
|
||||
|
||||
atomic_set(&ctrl->abort_limit, id->acl + 1);
|
||||
ctrl->vwc = id->vwc;
|
||||
if (id->mdts)
|
||||
max_hw_sectors = 1 << (id->mdts + page_shift - 9);
|
||||
else
|
||||
max_hw_sectors = UINT_MAX;
|
||||
ctrl->max_hw_sectors =
|
||||
min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
|
||||
|
||||
nvme_set_queue_limits(ctrl, ctrl->admin_q);
|
||||
ctrl->sgls = le32_to_cpu(id->sgls);
|
||||
ctrl->kas = le16_to_cpu(id->kas);
|
||||
ctrl->max_namespaces = le32_to_cpu(id->mnan);
|
||||
ctrl->ctratt = le32_to_cpu(id->ctratt);
|
||||
|
||||
if (id->rtd3e) {
|
||||
/* us -> s */
|
||||
u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
|
||||
|
||||
ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
|
||||
shutdown_timeout, 60);
|
||||
|
||||
if (ctrl->shutdown_timeout != shutdown_timeout)
|
||||
dev_info(ctrl->device,
|
||||
"Shutdown timeout set to %u seconds\n",
|
||||
ctrl->shutdown_timeout);
|
||||
} else
|
||||
ctrl->shutdown_timeout = shutdown_timeout;
|
||||
|
||||
ctrl->npss = id->npss;
|
||||
ctrl->apsta = id->apsta;
|
||||
prev_apst_enabled = ctrl->apst_enabled;
|
||||
if (ctrl->quirks & NVME_QUIRK_NO_APST) {
|
||||
if (force_apst && id->apsta) {
|
||||
dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
|
||||
ctrl->apst_enabled = true;
|
||||
} else {
|
||||
ctrl->apst_enabled = false;
|
||||
}
|
||||
} else {
|
||||
ctrl->apst_enabled = id->apsta;
|
||||
}
|
||||
memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
|
||||
|
||||
if (ctrl->ops->flags & NVME_F_FABRICS) {
|
||||
ctrl->icdoff = le16_to_cpu(id->icdoff);
|
||||
ctrl->ioccsz = le32_to_cpu(id->ioccsz);
|
||||
ctrl->iorcsz = le32_to_cpu(id->iorcsz);
|
||||
ctrl->maxcmd = le16_to_cpu(id->maxcmd);
|
||||
|
||||
/*
|
||||
* In fabrics we need to verify the cntlid matches the
|
||||
* admin connect
|
||||
*/
|
||||
if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
|
||||
dev_err(ctrl->device,
|
||||
"Mismatching cntlid: Connect %u vs Identify "
|
||||
"%u, rejecting\n",
|
||||
ctrl->cntlid, le16_to_cpu(id->cntlid));
|
||||
ret = -EINVAL;
|
||||
goto out_free;
|
||||
}
|
||||
|
||||
if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
|
||||
dev_err(ctrl->device,
|
||||
"keep-alive support is mandatory for fabrics\n");
|
||||
ret = -EINVAL;
|
||||
goto out_free;
|
||||
}
|
||||
} else {
|
||||
ctrl->hmpre = le32_to_cpu(id->hmpre);
|
||||
ctrl->hmmin = le32_to_cpu(id->hmmin);
|
||||
ctrl->hmminds = le32_to_cpu(id->hmminds);
|
||||
ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
|
||||
}
|
||||
|
||||
ret = nvme_mpath_init_identify(ctrl, id);
|
||||
kfree(id);
|
||||
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
if (ctrl->apst_enabled && !prev_apst_enabled)
|
||||
dev_pm_qos_expose_latency_tolerance(ctrl->device);
|
||||
else if (!ctrl->apst_enabled && prev_apst_enabled)
|
||||
dev_pm_qos_hide_latency_tolerance(ctrl->device);
|
||||
|
||||
ret = nvme_configure_apst(ctrl);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
ret = nvme_configure_timestamp(ctrl);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
ret = nvme_configure_directives(ctrl);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
ret = nvme_configure_acre(ctrl);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
|
||||
ret = nvme_hwmon_init(ctrl);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
}
|
||||
|
||||
ctrl->identified = true;
|
||||
|
||||
return 0;
|
||||
|
||||
out_free:
|
||||
kfree(id);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_init_identify);
|
||||
|
||||
static int nvme_dev_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
struct nvme_ctrl *ctrl =
|
||||
container_of(inode->i_cdev, struct nvme_ctrl, cdev);
|
||||
|
||||
switch (ctrl->state) {
|
||||
case NVME_CTRL_LIVE:
|
||||
break;
|
||||
default:
|
||||
return -EWOULDBLOCK;
|
||||
}
|
||||
|
||||
nvme_get_ctrl(ctrl);
|
||||
if (!try_module_get(ctrl->ops->module)) {
|
||||
nvme_put_ctrl(ctrl);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
file->private_data = ctrl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_dev_release(struct inode *inode, struct file *file)
|
||||
{
|
||||
struct nvme_ctrl *ctrl =
|
||||
container_of(inode->i_cdev, struct nvme_ctrl, cdev);
|
||||
|
||||
module_put(ctrl->ops->module);
|
||||
nvme_put_ctrl(ctrl);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
int ret;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
if (list_empty(&ctrl->namespaces)) {
|
||||
ret = -ENOTTY;
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
|
||||
if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
|
||||
dev_warn(ctrl->device,
|
||||
"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
|
||||
ret = -EINVAL;
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
dev_warn(ctrl->device,
|
||||
"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
|
||||
kref_get(&ns->kref);
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
|
||||
ret = nvme_user_cmd(ctrl, ns, argp);
|
||||
nvme_put_ns(ns);
|
||||
return ret;
|
||||
|
||||
out_unlock:
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
|
||||
unsigned long arg)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = file->private_data;
|
||||
void __user *argp = (void __user *)arg;
|
||||
|
||||
switch (cmd) {
|
||||
case NVME_IOCTL_ADMIN_CMD:
|
||||
return nvme_user_cmd(ctrl, NULL, argp);
|
||||
case NVME_IOCTL_ADMIN64_CMD:
|
||||
return nvme_user_cmd64(ctrl, NULL, argp);
|
||||
case NVME_IOCTL_IO_CMD:
|
||||
return nvme_dev_user_cmd(ctrl, argp);
|
||||
case NVME_IOCTL_RESET:
|
||||
dev_warn(ctrl->device, "resetting controller\n");
|
||||
return nvme_reset_ctrl_sync(ctrl);
|
||||
case NVME_IOCTL_SUBSYS_RESET:
|
||||
return nvme_reset_subsystem(ctrl);
|
||||
case NVME_IOCTL_RESCAN:
|
||||
nvme_queue_scan(ctrl);
|
||||
return 0;
|
||||
default:
|
||||
return -ENOTTY;
|
||||
}
|
||||
}
|
||||
|
||||
static const struct file_operations nvme_dev_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.open = nvme_dev_open,
|
||||
.release = nvme_dev_release,
|
||||
.unlocked_ioctl = nvme_dev_ioctl,
|
||||
.compat_ioctl = compat_ptr_ioctl,
|
||||
};
|
||||
|
||||
static ssize_t nvme_sysfs_reset(struct device *dev,
|
||||
struct device_attribute *attr, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
int ret;
|
||||
|
||||
ret = nvme_reset_ctrl_sync(ctrl);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
return count;
|
||||
}
|
||||
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
|
||||
|
||||
static ssize_t nvme_sysfs_rescan(struct device *dev,
|
||||
struct device_attribute *attr, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
|
||||
nvme_queue_scan(ctrl);
|
||||
return count;
|
||||
}
|
||||
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
|
||||
|
||||
static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
|
||||
{
|
||||
struct gendisk *disk = dev_to_disk(dev);
|
||||
|
||||
if (disk->fops == &nvme_fops)
|
||||
return nvme_get_ns_from_dev(dev)->head;
|
||||
else
|
||||
return disk->private_data;
|
||||
}
|
||||
|
||||
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_ns_head *head = dev_to_ns_head(dev);
|
||||
struct nvme_ns_ids *ids = &head->ids;
|
||||
struct nvme_subsystem *subsys = head->subsys;
|
||||
int serial_len = sizeof(subsys->serial);
|
||||
int model_len = sizeof(subsys->model);
|
||||
|
||||
if (!uuid_is_null(&ids->uuid))
|
||||
return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
|
||||
|
||||
if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
|
||||
return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
|
||||
|
||||
if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
|
||||
return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
|
||||
|
||||
while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
|
||||
subsys->serial[serial_len - 1] == '\0'))
|
||||
serial_len--;
|
||||
while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
|
||||
subsys->model[model_len - 1] == '\0'))
|
||||
model_len--;
|
||||
|
||||
return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
|
||||
serial_len, subsys->serial, model_len, subsys->model,
|
||||
head->ns_id);
|
||||
}
|
||||
static DEVICE_ATTR_RO(wwid);
|
||||
|
||||
static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
|
||||
}
|
||||
static DEVICE_ATTR_RO(nguid);
|
||||
|
||||
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
|
||||
|
||||
/* For backward compatibility expose the NGUID to userspace if
|
||||
* we have no UUID set
|
||||
*/
|
||||
if (uuid_is_null(&ids->uuid)) {
|
||||
dev_warn_ratelimited(dev,
|
||||
"No UUID available providing old NGUID\n");
|
||||
return sysfs_emit(buf, "%pU\n", ids->nguid);
|
||||
}
|
||||
return sysfs_emit(buf, "%pU\n", &ids->uuid);
|
||||
}
|
||||
static DEVICE_ATTR_RO(uuid);
|
||||
|
||||
static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
|
||||
}
|
||||
static DEVICE_ATTR_RO(eui);
|
||||
|
||||
static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
|
||||
}
|
||||
static DEVICE_ATTR_RO(nsid);
|
||||
|
||||
static struct attribute *nvme_ns_id_attrs[] = {
|
||||
&dev_attr_wwid.attr,
|
||||
&dev_attr_uuid.attr,
|
||||
&dev_attr_nguid.attr,
|
||||
&dev_attr_eui.attr,
|
||||
&dev_attr_nsid.attr,
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
&dev_attr_ana_grpid.attr,
|
||||
&dev_attr_ana_state.attr,
|
||||
#endif
|
||||
NULL,
|
||||
};
|
||||
|
||||
static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
|
||||
struct attribute *a, int n)
|
||||
{
|
||||
struct device *dev = container_of(kobj, struct device, kobj);
|
||||
struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
|
||||
|
||||
if (a == &dev_attr_uuid.attr) {
|
||||
if (uuid_is_null(&ids->uuid) &&
|
||||
!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
|
||||
return 0;
|
||||
}
|
||||
if (a == &dev_attr_nguid.attr) {
|
||||
if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
|
||||
return 0;
|
||||
}
|
||||
if (a == &dev_attr_eui.attr) {
|
||||
if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
|
||||
return 0;
|
||||
}
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
|
||||
if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
|
||||
return 0;
|
||||
if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
return a->mode;
|
||||
}
|
||||
|
||||
static const struct attribute_group nvme_ns_id_attr_group = {
|
||||
.attrs = nvme_ns_id_attrs,
|
||||
.is_visible = nvme_ns_id_attrs_are_visible,
|
||||
};
|
||||
|
||||
const struct attribute_group *nvme_ns_id_attr_groups[] = {
|
||||
&nvme_ns_id_attr_group,
|
||||
#ifdef CONFIG_NVM
|
||||
&nvme_nvm_attr_group,
|
||||
#endif
|
||||
NULL,
|
||||
};
|
||||
|
||||
#define nvme_show_str_function(field) \
|
||||
static ssize_t field##_show(struct device *dev, \
|
||||
struct device_attribute *attr, char *buf) \
|
||||
{ \
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
|
||||
return sysfs_emit(buf, "%.*s\n", \
|
||||
(int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
|
||||
} \
|
||||
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
|
||||
|
||||
nvme_show_str_function(model);
|
||||
nvme_show_str_function(serial);
|
||||
nvme_show_str_function(firmware_rev);
|
||||
|
||||
#define nvme_show_int_function(field) \
|
||||
static ssize_t field##_show(struct device *dev, \
|
||||
struct device_attribute *attr, char *buf) \
|
||||
{ \
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
|
||||
return sysfs_emit(buf, "%d\n", ctrl->field); \
|
||||
} \
|
||||
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
|
||||
|
||||
nvme_show_int_function(cntlid);
|
||||
nvme_show_int_function(numa_node);
|
||||
nvme_show_int_function(queue_count);
|
||||
nvme_show_int_function(sqsize);
|
||||
|
||||
static ssize_t nvme_sysfs_delete(struct device *dev,
|
||||
struct device_attribute *attr, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
|
||||
if (device_remove_file_self(dev, attr))
|
||||
nvme_delete_ctrl_sync(ctrl);
|
||||
return count;
|
||||
}
|
||||
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
|
||||
|
||||
static ssize_t nvme_sysfs_show_transport(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
|
||||
return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
|
||||
}
|
||||
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
|
||||
|
||||
static ssize_t nvme_sysfs_show_state(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
static const char *const state_name[] = {
|
||||
[NVME_CTRL_NEW] = "new",
|
||||
[NVME_CTRL_LIVE] = "live",
|
||||
[NVME_CTRL_RESETTING] = "resetting",
|
||||
[NVME_CTRL_CONNECTING] = "connecting",
|
||||
[NVME_CTRL_DELETING] = "deleting",
|
||||
[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
|
||||
[NVME_CTRL_DEAD] = "dead",
|
||||
};
|
||||
|
||||
if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
|
||||
state_name[ctrl->state])
|
||||
return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
|
||||
|
||||
return sysfs_emit(buf, "unknown state\n");
|
||||
}
|
||||
|
||||
static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
|
||||
|
||||
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
|
||||
return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
|
||||
}
|
||||
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
|
||||
|
||||
static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
|
||||
return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
|
||||
}
|
||||
static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
|
||||
|
||||
static ssize_t nvme_sysfs_show_hostid(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
|
||||
return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
|
||||
}
|
||||
static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
|
||||
|
||||
static ssize_t nvme_sysfs_show_address(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
|
||||
return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
|
||||
}
|
||||
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
|
||||
|
||||
static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
|
||||
struct device_attribute *attr, char *buf)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
struct nvmf_ctrl_options *opts = ctrl->opts;
|
||||
|
||||
if (ctrl->opts->max_reconnects == -1)
|
||||
return sysfs_emit(buf, "off\n");
|
||||
return sysfs_emit(buf, "%d\n",
|
||||
opts->max_reconnects * opts->reconnect_delay);
|
||||
}
|
||||
|
||||
static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
|
||||
struct device_attribute *attr, const char *buf, size_t count)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
struct nvmf_ctrl_options *opts = ctrl->opts;
|
||||
int ctrl_loss_tmo, err;
|
||||
|
||||
err = kstrtoint(buf, 10, &ctrl_loss_tmo);
|
||||
if (err)
|
||||
return -EINVAL;
|
||||
|
||||
else if (ctrl_loss_tmo < 0)
|
||||
opts->max_reconnects = -1;
|
||||
else
|
||||
opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
|
||||
opts->reconnect_delay);
|
||||
return count;
|
||||
}
|
||||
static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
|
||||
nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
|
||||
|
||||
static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
|
||||
struct device_attribute *attr, char *buf)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
|
||||
if (ctrl->opts->reconnect_delay == -1)
|
||||
return sysfs_emit(buf, "off\n");
|
||||
return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
|
||||
}
|
||||
|
||||
static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
|
||||
struct device_attribute *attr, const char *buf, size_t count)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
unsigned int v;
|
||||
int err;
|
||||
|
||||
err = kstrtou32(buf, 10, &v);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
ctrl->opts->reconnect_delay = v;
|
||||
return count;
|
||||
}
|
||||
static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
|
||||
nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
|
||||
|
||||
static struct attribute *nvme_dev_attrs[] = {
|
||||
&dev_attr_reset_controller.attr,
|
||||
&dev_attr_rescan_controller.attr,
|
||||
&dev_attr_model.attr,
|
||||
&dev_attr_serial.attr,
|
||||
&dev_attr_firmware_rev.attr,
|
||||
&dev_attr_cntlid.attr,
|
||||
&dev_attr_delete_controller.attr,
|
||||
&dev_attr_transport.attr,
|
||||
&dev_attr_subsysnqn.attr,
|
||||
&dev_attr_address.attr,
|
||||
&dev_attr_state.attr,
|
||||
&dev_attr_numa_node.attr,
|
||||
&dev_attr_queue_count.attr,
|
||||
&dev_attr_sqsize.attr,
|
||||
&dev_attr_hostnqn.attr,
|
||||
&dev_attr_hostid.attr,
|
||||
&dev_attr_ctrl_loss_tmo.attr,
|
||||
&dev_attr_reconnect_delay.attr,
|
||||
NULL
|
||||
};
|
||||
|
||||
static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
|
||||
struct attribute *a, int n)
|
||||
{
|
||||
struct device *dev = container_of(kobj, struct device, kobj);
|
||||
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
||||
|
||||
if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
|
||||
return 0;
|
||||
if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
|
||||
return 0;
|
||||
if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
|
||||
return 0;
|
||||
if (a == &dev_attr_hostid.attr && !ctrl->opts)
|
||||
return 0;
|
||||
if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
|
||||
return 0;
|
||||
if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
|
||||
return 0;
|
||||
|
||||
return a->mode;
|
||||
}
|
||||
|
||||
static struct attribute_group nvme_dev_attrs_group = {
|
||||
.attrs = nvme_dev_attrs,
|
||||
.is_visible = nvme_dev_attrs_are_visible,
|
||||
};
|
||||
|
||||
static const struct attribute_group *nvme_dev_attr_groups[] = {
|
||||
&nvme_dev_attrs_group,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
|
||||
unsigned nsid)
|
||||
{
|
||||
struct nvme_ns_head *h;
|
||||
|
||||
lockdep_assert_held(&subsys->lock);
|
||||
|
||||
list_for_each_entry(h, &subsys->nsheads, entry) {
|
||||
if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
|
||||
return h;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
|
||||
struct nvme_ns_ids *ids)
|
||||
{
|
||||
struct nvme_ns_head *h;
|
||||
|
||||
lockdep_assert_held(&subsys->lock);
|
||||
|
||||
list_for_each_entry(h, &subsys->nsheads, entry) {
|
||||
if (nvme_ns_ids_valid(ids) && nvme_ns_ids_equal(ids, &h->ids))
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
|
||||
unsigned nsid, struct nvme_ns_ids *ids)
|
||||
{
|
||||
struct nvme_ns_head *head;
|
||||
size_t size = sizeof(*head);
|
||||
int ret = -ENOMEM;
|
||||
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
size += num_possible_nodes() * sizeof(struct nvme_ns *);
|
||||
#endif
|
||||
|
||||
head = kzalloc(size, GFP_KERNEL);
|
||||
if (!head)
|
||||
goto out;
|
||||
ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
|
||||
if (ret < 0)
|
||||
goto out_free_head;
|
||||
head->instance = ret;
|
||||
INIT_LIST_HEAD(&head->list);
|
||||
ret = init_srcu_struct(&head->srcu);
|
||||
if (ret)
|
||||
goto out_ida_remove;
|
||||
head->subsys = ctrl->subsys;
|
||||
head->ns_id = nsid;
|
||||
head->ids = *ids;
|
||||
kref_init(&head->ref);
|
||||
|
||||
ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &head->ids);
|
||||
if (ret) {
|
||||
dev_err(ctrl->device,
|
||||
"duplicate IDs for nsid %d\n", nsid);
|
||||
goto out_cleanup_srcu;
|
||||
}
|
||||
|
||||
if (head->ids.csi) {
|
||||
ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
|
||||
if (ret)
|
||||
goto out_cleanup_srcu;
|
||||
} else
|
||||
head->effects = ctrl->effects;
|
||||
|
||||
ret = nvme_mpath_alloc_disk(ctrl, head);
|
||||
if (ret)
|
||||
goto out_cleanup_srcu;
|
||||
|
||||
list_add_tail(&head->entry, &ctrl->subsys->nsheads);
|
||||
|
||||
kref_get(&ctrl->subsys->ref);
|
||||
|
||||
return head;
|
||||
out_cleanup_srcu:
|
||||
cleanup_srcu_struct(&head->srcu);
|
||||
out_ida_remove:
|
||||
ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
|
||||
out_free_head:
|
||||
kfree(head);
|
||||
out:
|
||||
if (ret > 0)
|
||||
ret = blk_status_to_errno(nvme_error_status(ret));
|
||||
return ERR_PTR(ret);
|
||||
}
|
||||
|
||||
static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
|
||||
struct nvme_ns_ids *ids, bool is_shared)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = ns->ctrl;
|
||||
struct nvme_ns_head *head = NULL;
|
||||
int ret = 0;
|
||||
|
||||
mutex_lock(&ctrl->subsys->lock);
|
||||
head = nvme_find_ns_head(ctrl->subsys, nsid);
|
||||
if (!head) {
|
||||
head = nvme_alloc_ns_head(ctrl, nsid, ids);
|
||||
if (IS_ERR(head)) {
|
||||
ret = PTR_ERR(head);
|
||||
goto out_unlock;
|
||||
}
|
||||
head->shared = is_shared;
|
||||
} else {
|
||||
ret = -EINVAL;
|
||||
if (!is_shared || !head->shared) {
|
||||
dev_err(ctrl->device,
|
||||
"Duplicate unshared namespace %d\n", nsid);
|
||||
goto out_put_ns_head;
|
||||
}
|
||||
if (!nvme_ns_ids_equal(&head->ids, ids)) {
|
||||
dev_err(ctrl->device,
|
||||
"IDs don't match for shared namespace %d\n",
|
||||
nsid);
|
||||
goto out_put_ns_head;
|
||||
}
|
||||
}
|
||||
|
||||
list_add_tail(&ns->siblings, &head->list);
|
||||
ns->head = head;
|
||||
mutex_unlock(&ctrl->subsys->lock);
|
||||
return 0;
|
||||
|
||||
out_put_ns_head:
|
||||
nvme_put_ns_head(head);
|
||||
out_unlock:
|
||||
mutex_unlock(&ctrl->subsys->lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
||||
{
|
||||
struct nvme_ns *ns, *ret = NULL;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
||||
if (ns->head->ns_id == nsid) {
|
||||
if (!kref_get_unless_zero(&ns->kref))
|
||||
continue;
|
||||
ret = ns;
|
||||
break;
|
||||
}
|
||||
if (ns->head->ns_id > nsid)
|
||||
break;
|
||||
}
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
|
||||
|
||||
/*
|
||||
* Add the namespace to the controller list while keeping the list ordered.
|
||||
*/
|
||||
static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
|
||||
{
|
||||
struct nvme_ns *tmp;
|
||||
|
||||
list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
|
||||
if (tmp->head->ns_id < ns->head->ns_id) {
|
||||
list_add(&ns->list, &tmp->list);
|
||||
return;
|
||||
}
|
||||
}
|
||||
list_add(&ns->list, &ns->ctrl->namespaces);
|
||||
}
|
||||
|
||||
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
|
||||
struct nvme_ns_ids *ids)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
struct gendisk *disk;
|
||||
struct nvme_id_ns *id;
|
||||
char disk_name[DISK_NAME_LEN];
|
||||
int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
|
||||
|
||||
if (nvme_identify_ns(ctrl, nsid, ids, &id))
|
||||
return;
|
||||
|
||||
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
|
||||
if (!ns)
|
||||
goto out_free_id;
|
||||
|
||||
ns->queue = blk_mq_init_queue(ctrl->tagset);
|
||||
if (IS_ERR(ns->queue))
|
||||
goto out_free_ns;
|
||||
|
||||
if (ctrl->opts && ctrl->opts->data_digest)
|
||||
blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
|
||||
|
||||
blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
|
||||
if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
|
||||
blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
|
||||
|
||||
ns->queue->queuedata = ns;
|
||||
ns->ctrl = ctrl;
|
||||
kref_init(&ns->kref);
|
||||
|
||||
ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
|
||||
if (ret)
|
||||
goto out_free_queue;
|
||||
nvme_set_disk_name(disk_name, ns, ctrl, &flags);
|
||||
|
||||
disk = alloc_disk_node(0, node);
|
||||
if (!disk)
|
||||
goto out_unlink_ns;
|
||||
|
||||
disk->fops = &nvme_fops;
|
||||
disk->private_data = ns;
|
||||
disk->queue = ns->queue;
|
||||
disk->flags = flags;
|
||||
memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
|
||||
ns->disk = disk;
|
||||
|
||||
if (nvme_update_ns_info(ns, id))
|
||||
goto out_put_disk;
|
||||
|
||||
if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
|
||||
ret = nvme_nvm_register(ns, disk_name, node);
|
||||
if (ret) {
|
||||
dev_warn(ctrl->device, "LightNVM init failure\n");
|
||||
goto out_put_disk;
|
||||
}
|
||||
}
|
||||
|
||||
down_write(&ctrl->namespaces_rwsem);
|
||||
nvme_ns_add_to_ctrl_list(ns);
|
||||
up_write(&ctrl->namespaces_rwsem);
|
||||
nvme_get_ctrl(ctrl);
|
||||
|
||||
device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
|
||||
|
||||
nvme_mpath_add_disk(ns, id);
|
||||
nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
|
||||
kfree(id);
|
||||
|
||||
return;
|
||||
out_put_disk:
|
||||
/* prevent double queue cleanup */
|
||||
ns->disk->queue = NULL;
|
||||
put_disk(ns->disk);
|
||||
out_unlink_ns:
|
||||
mutex_lock(&ctrl->subsys->lock);
|
||||
list_del_rcu(&ns->siblings);
|
||||
if (list_empty(&ns->head->list))
|
||||
list_del_init(&ns->head->entry);
|
||||
mutex_unlock(&ctrl->subsys->lock);
|
||||
nvme_put_ns_head(ns->head);
|
||||
out_free_queue:
|
||||
blk_cleanup_queue(ns->queue);
|
||||
out_free_ns:
|
||||
kfree(ns);
|
||||
out_free_id:
|
||||
kfree(id);
|
||||
}
|
||||
|
||||
static void nvme_ns_remove(struct nvme_ns *ns)
|
||||
{
|
||||
if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
|
||||
return;
|
||||
|
||||
set_capacity(ns->disk, 0);
|
||||
nvme_fault_inject_fini(&ns->fault_inject);
|
||||
|
||||
mutex_lock(&ns->ctrl->subsys->lock);
|
||||
list_del_rcu(&ns->siblings);
|
||||
if (list_empty(&ns->head->list))
|
||||
list_del_init(&ns->head->entry);
|
||||
mutex_unlock(&ns->ctrl->subsys->lock);
|
||||
|
||||
synchronize_rcu(); /* guarantee not available in head->list */
|
||||
nvme_mpath_clear_current_path(ns);
|
||||
synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
|
||||
|
||||
if (ns->disk->flags & GENHD_FL_UP) {
|
||||
del_gendisk(ns->disk);
|
||||
blk_cleanup_queue(ns->queue);
|
||||
if (blk_get_integrity(ns->disk))
|
||||
blk_integrity_unregister(ns->disk);
|
||||
}
|
||||
|
||||
down_write(&ns->ctrl->namespaces_rwsem);
|
||||
list_del_init(&ns->list);
|
||||
up_write(&ns->ctrl->namespaces_rwsem);
|
||||
|
||||
nvme_mpath_check_last_path(ns);
|
||||
nvme_put_ns(ns);
|
||||
}
|
||||
|
||||
static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
|
||||
{
|
||||
struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
|
||||
|
||||
if (ns) {
|
||||
nvme_ns_remove(ns);
|
||||
nvme_put_ns(ns);
|
||||
}
|
||||
}
|
||||
|
||||
static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
|
||||
{
|
||||
struct nvme_id_ns *id;
|
||||
int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
|
||||
|
||||
if (test_bit(NVME_NS_DEAD, &ns->flags))
|
||||
goto out;
|
||||
|
||||
ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
|
||||
if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
|
||||
dev_err(ns->ctrl->device,
|
||||
"identifiers changed for nsid %d\n", ns->head->ns_id);
|
||||
goto out_free_id;
|
||||
}
|
||||
|
||||
ret = nvme_update_ns_info(ns, id);
|
||||
|
||||
out_free_id:
|
||||
kfree(id);
|
||||
out:
|
||||
/*
|
||||
* Only remove the namespace if we got a fatal error back from the
|
||||
* device, otherwise ignore the error and just move on.
|
||||
*
|
||||
* TODO: we should probably schedule a delayed retry here.
|
||||
*/
|
||||
if (ret > 0 && (ret & NVME_SC_DNR))
|
||||
nvme_ns_remove(ns);
|
||||
else
|
||||
revalidate_disk_size(ns->disk, true);
|
||||
}
|
||||
|
||||
static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
||||
{
|
||||
struct nvme_ns_ids ids = { };
|
||||
struct nvme_ns *ns;
|
||||
|
||||
if (nvme_identify_ns_descs(ctrl, nsid, &ids))
|
||||
return;
|
||||
|
||||
ns = nvme_find_get_ns(ctrl, nsid);
|
||||
if (ns) {
|
||||
nvme_validate_ns(ns, &ids);
|
||||
nvme_put_ns(ns);
|
||||
return;
|
||||
}
|
||||
|
||||
switch (ids.csi) {
|
||||
case NVME_CSI_NVM:
|
||||
nvme_alloc_ns(ctrl, nsid, &ids);
|
||||
break;
|
||||
case NVME_CSI_ZNS:
|
||||
if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
|
||||
dev_warn(ctrl->device,
|
||||
"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
|
||||
nsid);
|
||||
break;
|
||||
}
|
||||
if (!nvme_multi_css(ctrl)) {
|
||||
dev_warn(ctrl->device,
|
||||
"command set not reported for nsid: %d\n",
|
||||
nsid);
|
||||
break;
|
||||
}
|
||||
nvme_alloc_ns(ctrl, nsid, &ids);
|
||||
break;
|
||||
default:
|
||||
dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
|
||||
ids.csi, nsid);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
|
||||
unsigned nsid)
|
||||
{
|
||||
struct nvme_ns *ns, *next;
|
||||
LIST_HEAD(rm_list);
|
||||
|
||||
down_write(&ctrl->namespaces_rwsem);
|
||||
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
|
||||
if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
|
||||
list_move_tail(&ns->list, &rm_list);
|
||||
}
|
||||
up_write(&ctrl->namespaces_rwsem);
|
||||
|
||||
list_for_each_entry_safe(ns, next, &rm_list, list)
|
||||
nvme_ns_remove(ns);
|
||||
|
||||
}
|
||||
|
||||
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
|
||||
__le32 *ns_list;
|
||||
u32 prev = 0;
|
||||
int ret = 0, i;
|
||||
|
||||
if (nvme_ctrl_limited_cns(ctrl))
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
|
||||
if (!ns_list)
|
||||
return -ENOMEM;
|
||||
|
||||
for (;;) {
|
||||
struct nvme_command cmd = {
|
||||
.identify.opcode = nvme_admin_identify,
|
||||
.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
|
||||
.identify.nsid = cpu_to_le32(prev),
|
||||
};
|
||||
|
||||
ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
|
||||
NVME_IDENTIFY_DATA_SIZE);
|
||||
if (ret)
|
||||
goto free;
|
||||
|
||||
for (i = 0; i < nr_entries; i++) {
|
||||
u32 nsid = le32_to_cpu(ns_list[i]);
|
||||
|
||||
if (!nsid) /* end of the list? */
|
||||
goto out;
|
||||
nvme_validate_or_alloc_ns(ctrl, nsid);
|
||||
while (++prev < nsid)
|
||||
nvme_ns_remove_by_nsid(ctrl, prev);
|
||||
}
|
||||
}
|
||||
out:
|
||||
nvme_remove_invalid_namespaces(ctrl, prev);
|
||||
free:
|
||||
kfree(ns_list);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_id_ctrl *id;
|
||||
u32 nn, i;
|
||||
|
||||
if (nvme_identify_ctrl(ctrl, &id))
|
||||
return;
|
||||
nn = le32_to_cpu(id->nn);
|
||||
kfree(id);
|
||||
|
||||
for (i = 1; i <= nn; i++)
|
||||
nvme_validate_or_alloc_ns(ctrl, i);
|
||||
|
||||
nvme_remove_invalid_namespaces(ctrl, nn);
|
||||
}
|
||||
|
||||
static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
|
||||
__le32 *log;
|
||||
int error;
|
||||
|
||||
log = kzalloc(log_size, GFP_KERNEL);
|
||||
if (!log)
|
||||
return;
|
||||
|
||||
/*
|
||||
* We need to read the log to clear the AEN, but we don't want to rely
|
||||
* on it for the changed namespace information as userspace could have
|
||||
* raced with us in reading the log page, which could cause us to miss
|
||||
* updates.
|
||||
*/
|
||||
error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
|
||||
NVME_CSI_NVM, log, log_size, 0);
|
||||
if (error)
|
||||
dev_warn(ctrl->device,
|
||||
"reading changed ns log failed: %d\n", error);
|
||||
|
||||
kfree(log);
|
||||
}
|
||||
|
||||
static void nvme_scan_work(struct work_struct *work)
|
||||
{
|
||||
struct nvme_ctrl *ctrl =
|
||||
container_of(work, struct nvme_ctrl, scan_work);
|
||||
|
||||
/* No tagset on a live ctrl means IO queues could not created */
|
||||
if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
|
||||
return;
|
||||
|
||||
if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
|
||||
dev_info(ctrl->device, "rescanning namespaces.\n");
|
||||
nvme_clear_changed_ns_log(ctrl);
|
||||
}
|
||||
|
||||
mutex_lock(&ctrl->scan_lock);
|
||||
if (nvme_scan_ns_list(ctrl) != 0)
|
||||
nvme_scan_ns_sequential(ctrl);
|
||||
mutex_unlock(&ctrl->scan_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function iterates the namespace list unlocked to allow recovery from
|
||||
* controller failure. It is up to the caller to ensure the namespace list is
|
||||
* not modified by scan work while this function is executing.
|
||||
*/
|
||||
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_ns *ns, *next;
|
||||
LIST_HEAD(ns_list);
|
||||
|
||||
/*
|
||||
* make sure to requeue I/O to all namespaces as these
|
||||
* might result from the scan itself and must complete
|
||||
* for the scan_work to make progress
|
||||
*/
|
||||
nvme_mpath_clear_ctrl_paths(ctrl);
|
||||
|
||||
/* prevent racing with ns scanning */
|
||||
flush_work(&ctrl->scan_work);
|
||||
|
||||
/*
|
||||
* The dead states indicates the controller was not gracefully
|
||||
* disconnected. In that case, we won't be able to flush any data while
|
||||
* removing the namespaces' disks; fail all the queues now to avoid
|
||||
* potentially having to clean up the failed sync later.
|
||||
*/
|
||||
if (ctrl->state == NVME_CTRL_DEAD)
|
||||
nvme_kill_queues(ctrl);
|
||||
|
||||
/* this is a no-op when called from the controller reset handler */
|
||||
nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
|
||||
|
||||
down_write(&ctrl->namespaces_rwsem);
|
||||
list_splice_init(&ctrl->namespaces, &ns_list);
|
||||
up_write(&ctrl->namespaces_rwsem);
|
||||
|
||||
list_for_each_entry_safe(ns, next, &ns_list, list)
|
||||
nvme_ns_remove(ns);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
|
||||
|
||||
static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
|
||||
{
|
||||
struct nvme_ctrl *ctrl =
|
||||
container_of(dev, struct nvme_ctrl, ctrl_device);
|
||||
struct nvmf_ctrl_options *opts = ctrl->opts;
|
||||
int ret;
|
||||
|
||||
ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (opts) {
|
||||
ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = add_uevent_var(env, "NVME_TRSVCID=%s",
|
||||
opts->trsvcid ?: "none");
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
|
||||
opts->host_traddr ?: "none");
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
char *envp[2] = { NULL, NULL };
|
||||
u32 aen_result = ctrl->aen_result;
|
||||
|
||||
ctrl->aen_result = 0;
|
||||
if (!aen_result)
|
||||
return;
|
||||
|
||||
envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
|
||||
if (!envp[0])
|
||||
return;
|
||||
kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
|
||||
kfree(envp[0]);
|
||||
}
|
||||
|
||||
static void nvme_async_event_work(struct work_struct *work)
|
||||
{
|
||||
struct nvme_ctrl *ctrl =
|
||||
container_of(work, struct nvme_ctrl, async_event_work);
|
||||
|
||||
nvme_aen_uevent(ctrl);
|
||||
|
||||
/*
|
||||
* The transport drivers must guarantee AER submission here is safe by
|
||||
* flushing ctrl async_event_work after changing the controller state
|
||||
* from LIVE and before freeing the admin queue.
|
||||
*/
|
||||
if (ctrl->state == NVME_CTRL_LIVE)
|
||||
ctrl->ops->submit_async_event(ctrl);
|
||||
}
|
||||
|
||||
static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
|
||||
u32 csts;
|
||||
|
||||
if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
|
||||
return false;
|
||||
|
||||
if (csts == ~0)
|
||||
return false;
|
||||
|
||||
return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
|
||||
}
|
||||
|
||||
static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_fw_slot_info_log *log;
|
||||
|
||||
log = kmalloc(sizeof(*log), GFP_KERNEL);
|
||||
if (!log)
|
||||
return;
|
||||
|
||||
if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
|
||||
log, sizeof(*log), 0))
|
||||
dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
|
||||
kfree(log);
|
||||
}
|
||||
|
||||
static void nvme_fw_act_work(struct work_struct *work)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = container_of(work,
|
||||
struct nvme_ctrl, fw_act_work);
|
||||
unsigned long fw_act_timeout;
|
||||
|
||||
if (ctrl->mtfa)
|
||||
fw_act_timeout = jiffies +
|
||||
msecs_to_jiffies(ctrl->mtfa * 100);
|
||||
else
|
||||
fw_act_timeout = jiffies +
|
||||
msecs_to_jiffies(admin_timeout * 1000);
|
||||
|
||||
nvme_stop_queues(ctrl);
|
||||
while (nvme_ctrl_pp_status(ctrl)) {
|
||||
if (time_after(jiffies, fw_act_timeout)) {
|
||||
dev_warn(ctrl->device,
|
||||
"Fw activation timeout, reset controller\n");
|
||||
nvme_try_sched_reset(ctrl);
|
||||
return;
|
||||
}
|
||||
msleep(100);
|
||||
}
|
||||
|
||||
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
|
||||
return;
|
||||
|
||||
nvme_start_queues(ctrl);
|
||||
/* read FW slot information to clear the AER */
|
||||
nvme_get_fw_slot_info(ctrl);
|
||||
}
|
||||
|
||||
static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
|
||||
{
|
||||
u32 aer_notice_type = (result & 0xff00) >> 8;
|
||||
|
||||
trace_nvme_async_event(ctrl, aer_notice_type);
|
||||
|
||||
switch (aer_notice_type) {
|
||||
case NVME_AER_NOTICE_NS_CHANGED:
|
||||
set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
|
||||
nvme_queue_scan(ctrl);
|
||||
break;
|
||||
case NVME_AER_NOTICE_FW_ACT_STARTING:
|
||||
/*
|
||||
* We are (ab)using the RESETTING state to prevent subsequent
|
||||
* recovery actions from interfering with the controller's
|
||||
* firmware activation.
|
||||
*/
|
||||
if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
|
||||
queue_work(nvme_wq, &ctrl->fw_act_work);
|
||||
break;
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
case NVME_AER_NOTICE_ANA:
|
||||
if (!ctrl->ana_log_buf)
|
||||
break;
|
||||
queue_work(nvme_wq, &ctrl->ana_work);
|
||||
break;
|
||||
#endif
|
||||
case NVME_AER_NOTICE_DISC_CHANGED:
|
||||
ctrl->aen_result = result;
|
||||
break;
|
||||
default:
|
||||
dev_warn(ctrl->device, "async event result %08x\n", result);
|
||||
}
|
||||
}
|
||||
|
||||
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
|
||||
volatile union nvme_result *res)
|
||||
{
|
||||
u32 result = le32_to_cpu(res->u32);
|
||||
u32 aer_type = result & 0x07;
|
||||
|
||||
if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
|
||||
return;
|
||||
|
||||
switch (aer_type) {
|
||||
case NVME_AER_NOTICE:
|
||||
nvme_handle_aen_notice(ctrl, result);
|
||||
break;
|
||||
case NVME_AER_ERROR:
|
||||
case NVME_AER_SMART:
|
||||
case NVME_AER_CSS:
|
||||
case NVME_AER_VS:
|
||||
trace_nvme_async_event(ctrl, aer_type);
|
||||
ctrl->aen_result = result;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
queue_work(nvme_wq, &ctrl->async_event_work);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_complete_async_event);
|
||||
|
||||
void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
nvme_mpath_stop(ctrl);
|
||||
nvme_stop_keep_alive(ctrl);
|
||||
flush_work(&ctrl->async_event_work);
|
||||
cancel_work_sync(&ctrl->fw_act_work);
|
||||
if (ctrl->ops->stop_ctrl)
|
||||
ctrl->ops->stop_ctrl(ctrl);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
|
||||
|
||||
void nvme_start_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
nvme_start_keep_alive(ctrl);
|
||||
|
||||
nvme_enable_aen(ctrl);
|
||||
|
||||
if (ctrl->queue_count > 1) {
|
||||
nvme_queue_scan(ctrl);
|
||||
nvme_start_queues(ctrl);
|
||||
nvme_mpath_update(ctrl);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_start_ctrl);
|
||||
|
||||
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
nvme_fault_inject_fini(&ctrl->fault_inject);
|
||||
dev_pm_qos_hide_latency_tolerance(ctrl->device);
|
||||
cdev_device_del(&ctrl->cdev, ctrl->device);
|
||||
nvme_put_ctrl(ctrl);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
|
||||
|
||||
static void nvme_free_cels(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_effects_log *cel;
|
||||
unsigned long i;
|
||||
|
||||
xa_for_each (&ctrl->cels, i, cel) {
|
||||
xa_erase(&ctrl->cels, i);
|
||||
kfree(cel);
|
||||
}
|
||||
|
||||
xa_destroy(&ctrl->cels);
|
||||
}
|
||||
|
||||
static void nvme_free_ctrl(struct device *dev)
|
||||
{
|
||||
struct nvme_ctrl *ctrl =
|
||||
container_of(dev, struct nvme_ctrl, ctrl_device);
|
||||
struct nvme_subsystem *subsys = ctrl->subsys;
|
||||
|
||||
if (!subsys || ctrl->instance != subsys->instance)
|
||||
ida_simple_remove(&nvme_instance_ida, ctrl->instance);
|
||||
|
||||
nvme_free_cels(ctrl);
|
||||
nvme_mpath_uninit(ctrl);
|
||||
__free_page(ctrl->discard_page);
|
||||
|
||||
if (subsys) {
|
||||
mutex_lock(&nvme_subsystems_lock);
|
||||
list_del(&ctrl->subsys_entry);
|
||||
sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
|
||||
mutex_unlock(&nvme_subsystems_lock);
|
||||
}
|
||||
|
||||
ctrl->ops->free_ctrl(ctrl);
|
||||
|
||||
if (subsys)
|
||||
nvme_put_subsystem(subsys);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize a NVMe controller structures. This needs to be called during
|
||||
* earliest initialization so that we have the initialized structured around
|
||||
* during probing.
|
||||
*/
|
||||
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
|
||||
const struct nvme_ctrl_ops *ops, unsigned long quirks)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ctrl->state = NVME_CTRL_NEW;
|
||||
spin_lock_init(&ctrl->lock);
|
||||
mutex_init(&ctrl->scan_lock);
|
||||
INIT_LIST_HEAD(&ctrl->namespaces);
|
||||
xa_init(&ctrl->cels);
|
||||
init_rwsem(&ctrl->namespaces_rwsem);
|
||||
ctrl->dev = dev;
|
||||
ctrl->ops = ops;
|
||||
ctrl->quirks = quirks;
|
||||
ctrl->numa_node = NUMA_NO_NODE;
|
||||
INIT_WORK(&ctrl->scan_work, nvme_scan_work);
|
||||
INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
|
||||
INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
|
||||
INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
|
||||
init_waitqueue_head(&ctrl->state_wq);
|
||||
|
||||
INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
|
||||
memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
|
||||
ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
|
||||
|
||||
BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
|
||||
PAGE_SIZE);
|
||||
ctrl->discard_page = alloc_page(GFP_KERNEL);
|
||||
if (!ctrl->discard_page) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
ctrl->instance = ret;
|
||||
|
||||
device_initialize(&ctrl->ctrl_device);
|
||||
ctrl->device = &ctrl->ctrl_device;
|
||||
ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
|
||||
ctrl->device->class = nvme_class;
|
||||
ctrl->device->parent = ctrl->dev;
|
||||
ctrl->device->groups = nvme_dev_attr_groups;
|
||||
ctrl->device->release = nvme_free_ctrl;
|
||||
dev_set_drvdata(ctrl->device, ctrl);
|
||||
ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
|
||||
if (ret)
|
||||
goto out_release_instance;
|
||||
|
||||
nvme_get_ctrl(ctrl);
|
||||
cdev_init(&ctrl->cdev, &nvme_dev_fops);
|
||||
ctrl->cdev.owner = ops->module;
|
||||
ret = cdev_device_add(&ctrl->cdev, ctrl->device);
|
||||
if (ret)
|
||||
goto out_free_name;
|
||||
|
||||
/*
|
||||
* Initialize latency tolerance controls. The sysfs files won't
|
||||
* be visible to userspace unless the device actually supports APST.
|
||||
*/
|
||||
ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
|
||||
dev_pm_qos_update_user_latency_tolerance(ctrl->device,
|
||||
min(default_ps_max_latency_us, (unsigned long)S32_MAX));
|
||||
|
||||
nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
|
||||
nvme_mpath_init_ctrl(ctrl);
|
||||
|
||||
return 0;
|
||||
out_free_name:
|
||||
nvme_put_ctrl(ctrl);
|
||||
kfree_const(ctrl->device->kobj.name);
|
||||
out_release_instance:
|
||||
ida_simple_remove(&nvme_instance_ida, ctrl->instance);
|
||||
out:
|
||||
if (ctrl->discard_page)
|
||||
__free_page(ctrl->discard_page);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
|
||||
|
||||
/**
|
||||
* nvme_kill_queues(): Ends all namespace queues
|
||||
* @ctrl: the dead controller that needs to end
|
||||
*
|
||||
* Call this function when the driver determines it is unable to get the
|
||||
* controller in a state capable of servicing IO.
|
||||
*/
|
||||
void nvme_kill_queues(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
|
||||
/* Forcibly unquiesce queues to avoid blocking dispatch */
|
||||
if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
|
||||
blk_mq_unquiesce_queue(ctrl->admin_q);
|
||||
|
||||
list_for_each_entry(ns, &ctrl->namespaces, list)
|
||||
nvme_set_queue_dying(ns);
|
||||
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_kill_queues);
|
||||
|
||||
void nvme_unfreeze(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
list_for_each_entry(ns, &ctrl->namespaces, list)
|
||||
blk_mq_unfreeze_queue(ns->queue);
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_unfreeze);
|
||||
|
||||
int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
||||
timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
|
||||
if (timeout <= 0)
|
||||
break;
|
||||
}
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
return timeout;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
|
||||
|
||||
void nvme_wait_freeze(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
list_for_each_entry(ns, &ctrl->namespaces, list)
|
||||
blk_mq_freeze_queue_wait(ns->queue);
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_wait_freeze);
|
||||
|
||||
void nvme_start_freeze(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
list_for_each_entry(ns, &ctrl->namespaces, list)
|
||||
blk_freeze_queue_start(ns->queue);
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_start_freeze);
|
||||
|
||||
void nvme_stop_queues(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
list_for_each_entry(ns, &ctrl->namespaces, list)
|
||||
blk_mq_quiesce_queue(ns->queue);
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_stop_queues);
|
||||
|
||||
void nvme_start_queues(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
list_for_each_entry(ns, &ctrl->namespaces, list)
|
||||
blk_mq_unquiesce_queue(ns->queue);
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_start_queues);
|
||||
|
||||
void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_ns *ns;
|
||||
|
||||
down_read(&ctrl->namespaces_rwsem);
|
||||
list_for_each_entry(ns, &ctrl->namespaces, list)
|
||||
blk_sync_queue(ns->queue);
|
||||
up_read(&ctrl->namespaces_rwsem);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
|
||||
|
||||
void nvme_sync_queues(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
nvme_sync_io_queues(ctrl);
|
||||
if (ctrl->admin_q)
|
||||
blk_sync_queue(ctrl->admin_q);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nvme_sync_queues);
|
||||
|
||||
struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
|
||||
{
|
||||
if (file->f_op != &nvme_dev_fops)
|
||||
return NULL;
|
||||
return file->private_data;
|
||||
}
|
||||
EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
|
||||
|
||||
/*
|
||||
* Check we didn't inadvertently grow the command structure sizes:
|
||||
*/
|
||||
static inline void _nvme_check_size(void)
|
||||
{
|
||||
BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
|
||||
}
|
||||
|
||||
|
||||
static int __init nvme_core_init(void)
|
||||
{
|
||||
int result = -ENOMEM;
|
||||
|
||||
_nvme_check_size();
|
||||
|
||||
nvme_wq = alloc_workqueue("nvme-wq",
|
||||
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
|
||||
if (!nvme_wq)
|
||||
goto out;
|
||||
|
||||
nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
|
||||
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
|
||||
if (!nvme_reset_wq)
|
||||
goto destroy_wq;
|
||||
|
||||
nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
|
||||
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
|
||||
if (!nvme_delete_wq)
|
||||
goto destroy_reset_wq;
|
||||
|
||||
result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
|
||||
if (result < 0)
|
||||
goto destroy_delete_wq;
|
||||
|
||||
nvme_class = class_create(THIS_MODULE, "nvme");
|
||||
if (IS_ERR(nvme_class)) {
|
||||
result = PTR_ERR(nvme_class);
|
||||
goto unregister_chrdev;
|
||||
}
|
||||
nvme_class->dev_uevent = nvme_class_uevent;
|
||||
|
||||
nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
|
||||
if (IS_ERR(nvme_subsys_class)) {
|
||||
result = PTR_ERR(nvme_subsys_class);
|
||||
goto destroy_class;
|
||||
}
|
||||
return 0;
|
||||
|
||||
destroy_class:
|
||||
class_destroy(nvme_class);
|
||||
unregister_chrdev:
|
||||
unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
|
||||
destroy_delete_wq:
|
||||
destroy_workqueue(nvme_delete_wq);
|
||||
destroy_reset_wq:
|
||||
destroy_workqueue(nvme_reset_wq);
|
||||
destroy_wq:
|
||||
destroy_workqueue(nvme_wq);
|
||||
out:
|
||||
return result;
|
||||
}
|
||||
|
||||
static void __exit nvme_core_exit(void)
|
||||
{
|
||||
class_destroy(nvme_subsys_class);
|
||||
class_destroy(nvme_class);
|
||||
unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
|
||||
destroy_workqueue(nvme_delete_wq);
|
||||
destroy_workqueue(nvme_reset_wq);
|
||||
destroy_workqueue(nvme_wq);
|
||||
ida_destroy(&nvme_instance_ida);
|
||||
}
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_VERSION("1.0");
|
||||
module_init(nvme_core_init);
|
||||
module_exit(nvme_core_exit);
|
192
feed/kmod-nvme/src/fabrics.h
Normal file
192
feed/kmod-nvme/src/fabrics.h
Normal file
|
@ -0,0 +1,192 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
/*
|
||||
* NVMe over Fabrics common host code.
|
||||
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
|
||||
*/
|
||||
#ifndef _NVME_FABRICS_H
|
||||
#define _NVME_FABRICS_H 1
|
||||
|
||||
#include <linux/in.h>
|
||||
#include <linux/inet.h>
|
||||
|
||||
#define NVMF_MIN_QUEUE_SIZE 16
|
||||
#define NVMF_MAX_QUEUE_SIZE 1024
|
||||
#define NVMF_DEF_QUEUE_SIZE 128
|
||||
#define NVMF_DEF_RECONNECT_DELAY 10
|
||||
/* default to 600 seconds of reconnect attempts before giving up */
|
||||
#define NVMF_DEF_CTRL_LOSS_TMO 600
|
||||
|
||||
/*
|
||||
* Define a host as seen by the target. We allocate one at boot, but also
|
||||
* allow the override it when creating controllers. This is both to provide
|
||||
* persistence of the Host NQN over multiple boots, and to allow using
|
||||
* multiple ones, for example in a container scenario. Because we must not
|
||||
* use different Host NQNs with the same Host ID we generate a Host ID and
|
||||
* use this structure to keep track of the relation between the two.
|
||||
*/
|
||||
struct nvmf_host {
|
||||
struct kref ref;
|
||||
struct list_head list;
|
||||
char nqn[NVMF_NQN_SIZE];
|
||||
uuid_t id;
|
||||
};
|
||||
|
||||
/**
|
||||
* enum nvmf_parsing_opts - used to define the sysfs parsing options used.
|
||||
*/
|
||||
enum {
|
||||
NVMF_OPT_ERR = 0,
|
||||
NVMF_OPT_TRANSPORT = 1 << 0,
|
||||
NVMF_OPT_NQN = 1 << 1,
|
||||
NVMF_OPT_TRADDR = 1 << 2,
|
||||
NVMF_OPT_TRSVCID = 1 << 3,
|
||||
NVMF_OPT_QUEUE_SIZE = 1 << 4,
|
||||
NVMF_OPT_NR_IO_QUEUES = 1 << 5,
|
||||
NVMF_OPT_TL_RETRY_COUNT = 1 << 6,
|
||||
NVMF_OPT_KATO = 1 << 7,
|
||||
NVMF_OPT_HOSTNQN = 1 << 8,
|
||||
NVMF_OPT_RECONNECT_DELAY = 1 << 9,
|
||||
NVMF_OPT_HOST_TRADDR = 1 << 10,
|
||||
NVMF_OPT_CTRL_LOSS_TMO = 1 << 11,
|
||||
NVMF_OPT_HOST_ID = 1 << 12,
|
||||
NVMF_OPT_DUP_CONNECT = 1 << 13,
|
||||
NVMF_OPT_DISABLE_SQFLOW = 1 << 14,
|
||||
NVMF_OPT_HDR_DIGEST = 1 << 15,
|
||||
NVMF_OPT_DATA_DIGEST = 1 << 16,
|
||||
NVMF_OPT_NR_WRITE_QUEUES = 1 << 17,
|
||||
NVMF_OPT_NR_POLL_QUEUES = 1 << 18,
|
||||
NVMF_OPT_TOS = 1 << 19,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct nvmf_ctrl_options - Used to hold the options specified
|
||||
* with the parsing opts enum.
|
||||
* @mask: Used by the fabrics library to parse through sysfs options
|
||||
* on adding a NVMe controller.
|
||||
* @transport: Holds the fabric transport "technology name" (for a lack of
|
||||
* better description) that will be used by an NVMe controller
|
||||
* being added.
|
||||
* @subsysnqn: Hold the fully qualified NQN subystem name (format defined
|
||||
* in the NVMe specification, "NVMe Qualified Names").
|
||||
* @traddr: The transport-specific TRADDR field for a port on the
|
||||
* subsystem which is adding a controller.
|
||||
* @trsvcid: The transport-specific TRSVCID field for a port on the
|
||||
* subsystem which is adding a controller.
|
||||
* @host_traddr: A transport-specific field identifying the NVME host port
|
||||
* to use for the connection to the controller.
|
||||
* @queue_size: Number of IO queue elements.
|
||||
* @nr_io_queues: Number of controller IO queues that will be established.
|
||||
* @reconnect_delay: Time between two consecutive reconnect attempts.
|
||||
* @discovery_nqn: indicates if the subsysnqn is the well-known discovery NQN.
|
||||
* @kato: Keep-alive timeout.
|
||||
* @host: Virtual NVMe host, contains the NQN and Host ID.
|
||||
* @max_reconnects: maximum number of allowed reconnect attempts before removing
|
||||
* the controller, (-1) means reconnect forever, zero means remove
|
||||
* immediately;
|
||||
* @disable_sqflow: disable controller sq flow control
|
||||
* @hdr_digest: generate/verify header digest (TCP)
|
||||
* @data_digest: generate/verify data digest (TCP)
|
||||
* @nr_write_queues: number of queues for write I/O
|
||||
* @nr_poll_queues: number of queues for polling I/O
|
||||
* @tos: type of service
|
||||
*/
|
||||
struct nvmf_ctrl_options {
|
||||
unsigned mask;
|
||||
char *transport;
|
||||
char *subsysnqn;
|
||||
char *traddr;
|
||||
char *trsvcid;
|
||||
char *host_traddr;
|
||||
size_t queue_size;
|
||||
unsigned int nr_io_queues;
|
||||
unsigned int reconnect_delay;
|
||||
bool discovery_nqn;
|
||||
bool duplicate_connect;
|
||||
unsigned int kato;
|
||||
struct nvmf_host *host;
|
||||
int max_reconnects;
|
||||
bool disable_sqflow;
|
||||
bool hdr_digest;
|
||||
bool data_digest;
|
||||
unsigned int nr_write_queues;
|
||||
unsigned int nr_poll_queues;
|
||||
int tos;
|
||||
};
|
||||
|
||||
/*
|
||||
* struct nvmf_transport_ops - used to register a specific
|
||||
* fabric implementation of NVMe fabrics.
|
||||
* @entry: Used by the fabrics library to add the new
|
||||
* registration entry to its linked-list internal tree.
|
||||
* @module: Transport module reference
|
||||
* @name: Name of the NVMe fabric driver implementation.
|
||||
* @required_opts: sysfs command-line options that must be specified
|
||||
* when adding a new NVMe controller.
|
||||
* @allowed_opts: sysfs command-line options that can be specified
|
||||
* when adding a new NVMe controller.
|
||||
* @create_ctrl(): function pointer that points to a non-NVMe
|
||||
* implementation-specific fabric technology
|
||||
* that would go into starting up that fabric
|
||||
* for the purpose of conneciton to an NVMe controller
|
||||
* using that fabric technology.
|
||||
*
|
||||
* Notes:
|
||||
* 1. At minimum, 'required_opts' and 'allowed_opts' should
|
||||
* be set to the same enum parsing options defined earlier.
|
||||
* 2. create_ctrl() must be defined (even if it does nothing)
|
||||
* 3. struct nvmf_transport_ops must be statically allocated in the
|
||||
* modules .bss section so that a pure module_get on @module
|
||||
* prevents the memory from beeing freed.
|
||||
*/
|
||||
struct nvmf_transport_ops {
|
||||
struct list_head entry;
|
||||
struct module *module;
|
||||
const char *name;
|
||||
int required_opts;
|
||||
int allowed_opts;
|
||||
struct nvme_ctrl *(*create_ctrl)(struct device *dev,
|
||||
struct nvmf_ctrl_options *opts);
|
||||
};
|
||||
|
||||
static inline bool
|
||||
nvmf_ctlr_matches_baseopts(struct nvme_ctrl *ctrl,
|
||||
struct nvmf_ctrl_options *opts)
|
||||
{
|
||||
if (ctrl->state == NVME_CTRL_DELETING ||
|
||||
ctrl->state == NVME_CTRL_DELETING_NOIO ||
|
||||
ctrl->state == NVME_CTRL_DEAD ||
|
||||
strcmp(opts->subsysnqn, ctrl->opts->subsysnqn) ||
|
||||
strcmp(opts->host->nqn, ctrl->opts->host->nqn) ||
|
||||
memcmp(&opts->host->id, &ctrl->opts->host->id, sizeof(uuid_t)))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val);
|
||||
int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val);
|
||||
int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val);
|
||||
int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl);
|
||||
int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid, bool poll);
|
||||
int nvmf_register_transport(struct nvmf_transport_ops *ops);
|
||||
void nvmf_unregister_transport(struct nvmf_transport_ops *ops);
|
||||
void nvmf_free_options(struct nvmf_ctrl_options *opts);
|
||||
int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size);
|
||||
bool nvmf_should_reconnect(struct nvme_ctrl *ctrl);
|
||||
blk_status_t nvmf_fail_nonready_command(struct nvme_ctrl *ctrl,
|
||||
struct request *rq);
|
||||
bool __nvmf_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
|
||||
bool queue_live);
|
||||
bool nvmf_ip_options_match(struct nvme_ctrl *ctrl,
|
||||
struct nvmf_ctrl_options *opts);
|
||||
|
||||
static inline bool nvmf_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
|
||||
bool queue_live)
|
||||
{
|
||||
if (likely(ctrl->state == NVME_CTRL_LIVE ||
|
||||
ctrl->state == NVME_CTRL_DELETING))
|
||||
return true;
|
||||
return __nvmf_check_ready(ctrl, rq, queue_live);
|
||||
}
|
||||
|
||||
#endif /* _NVME_FABRICS_H */
|
893
feed/kmod-nvme/src/nvme.h
Normal file
893
feed/kmod-nvme/src/nvme.h
Normal file
|
@ -0,0 +1,893 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
/*
|
||||
* Copyright (c) 2011-2014, Intel Corporation.
|
||||
*/
|
||||
|
||||
#ifndef _NVME_H
|
||||
#define _NVME_H
|
||||
|
||||
#include <linux/nvme.h>
|
||||
#include <linux/cdev.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/kref.h>
|
||||
#include <linux/blk-mq.h>
|
||||
#include <linux/lightnvm.h>
|
||||
#include <linux/sed-opal.h>
|
||||
#include <linux/fault-inject.h>
|
||||
#include <linux/rcupdate.h>
|
||||
#include <linux/wait.h>
|
||||
#include <linux/t10-pi.h>
|
||||
|
||||
#include <trace/events/block.h>
|
||||
|
||||
extern unsigned int nvme_io_timeout;
|
||||
#define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
|
||||
|
||||
extern unsigned int admin_timeout;
|
||||
#define ADMIN_TIMEOUT (admin_timeout * HZ)
|
||||
|
||||
#define NVME_DEFAULT_KATO 5
|
||||
#define NVME_KATO_GRACE 10
|
||||
|
||||
#ifdef CONFIG_ARCH_NO_SG_CHAIN
|
||||
#define NVME_INLINE_SG_CNT 0
|
||||
#define NVME_INLINE_METADATA_SG_CNT 0
|
||||
#else
|
||||
#define NVME_INLINE_SG_CNT 2
|
||||
#define NVME_INLINE_METADATA_SG_CNT 1
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Default to a 4K page size, with the intention to update this
|
||||
* path in the future to accommodate architectures with differing
|
||||
* kernel and IO page sizes.
|
||||
*/
|
||||
#define NVME_CTRL_PAGE_SHIFT 12
|
||||
#define NVME_CTRL_PAGE_SIZE (1 << NVME_CTRL_PAGE_SHIFT)
|
||||
|
||||
extern struct workqueue_struct *nvme_wq;
|
||||
extern struct workqueue_struct *nvme_reset_wq;
|
||||
extern struct workqueue_struct *nvme_delete_wq;
|
||||
|
||||
enum {
|
||||
NVME_NS_LBA = 0,
|
||||
NVME_NS_LIGHTNVM = 1,
|
||||
};
|
||||
|
||||
/*
|
||||
* List of workarounds for devices that required behavior not specified in
|
||||
* the standard.
|
||||
*/
|
||||
enum nvme_quirks {
|
||||
/*
|
||||
* Prefers I/O aligned to a stripe size specified in a vendor
|
||||
* specific Identify field.
|
||||
*/
|
||||
NVME_QUIRK_STRIPE_SIZE = (1 << 0),
|
||||
|
||||
/*
|
||||
* The controller doesn't handle Identify value others than 0 or 1
|
||||
* correctly.
|
||||
*/
|
||||
NVME_QUIRK_IDENTIFY_CNS = (1 << 1),
|
||||
|
||||
/*
|
||||
* The controller deterministically returns O's on reads to
|
||||
* logical blocks that deallocate was called on.
|
||||
*/
|
||||
NVME_QUIRK_DEALLOCATE_ZEROES = (1 << 2),
|
||||
|
||||
/*
|
||||
* The controller needs a delay before starts checking the device
|
||||
* readiness, which is done by reading the NVME_CSTS_RDY bit.
|
||||
*/
|
||||
NVME_QUIRK_DELAY_BEFORE_CHK_RDY = (1 << 3),
|
||||
|
||||
/*
|
||||
* APST should not be used.
|
||||
*/
|
||||
NVME_QUIRK_NO_APST = (1 << 4),
|
||||
|
||||
/*
|
||||
* The deepest sleep state should not be used.
|
||||
*/
|
||||
NVME_QUIRK_NO_DEEPEST_PS = (1 << 5),
|
||||
|
||||
/*
|
||||
* Supports the LighNVM command set if indicated in vs[1].
|
||||
*/
|
||||
NVME_QUIRK_LIGHTNVM = (1 << 6),
|
||||
|
||||
/*
|
||||
* Set MEDIUM priority on SQ creation
|
||||
*/
|
||||
NVME_QUIRK_MEDIUM_PRIO_SQ = (1 << 7),
|
||||
|
||||
/*
|
||||
* Ignore device provided subnqn.
|
||||
*/
|
||||
NVME_QUIRK_IGNORE_DEV_SUBNQN = (1 << 8),
|
||||
|
||||
/*
|
||||
* Broken Write Zeroes.
|
||||
*/
|
||||
NVME_QUIRK_DISABLE_WRITE_ZEROES = (1 << 9),
|
||||
|
||||
/*
|
||||
* Force simple suspend/resume path.
|
||||
*/
|
||||
NVME_QUIRK_SIMPLE_SUSPEND = (1 << 10),
|
||||
|
||||
/*
|
||||
* Use only one interrupt vector for all queues
|
||||
*/
|
||||
NVME_QUIRK_SINGLE_VECTOR = (1 << 11),
|
||||
|
||||
/*
|
||||
* Use non-standard 128 bytes SQEs.
|
||||
*/
|
||||
NVME_QUIRK_128_BYTES_SQES = (1 << 12),
|
||||
|
||||
/*
|
||||
* Prevent tag overlap between queues
|
||||
*/
|
||||
NVME_QUIRK_SHARED_TAGS = (1 << 13),
|
||||
|
||||
/*
|
||||
* Don't change the value of the temperature threshold feature
|
||||
*/
|
||||
NVME_QUIRK_NO_TEMP_THRESH_CHANGE = (1 << 14),
|
||||
|
||||
/*
|
||||
* The controller doesn't handle the Identify Namespace
|
||||
* Identification Descriptor list subcommand despite claiming
|
||||
* NVMe 1.3 compliance.
|
||||
*/
|
||||
NVME_QUIRK_NO_NS_DESC_LIST = (1 << 15),
|
||||
|
||||
/*
|
||||
* The controller requires the command_id value be be limited, so skip
|
||||
* encoding the generation sequence number.
|
||||
*/
|
||||
NVME_QUIRK_SKIP_CID_GEN = (1 << 17),
|
||||
|
||||
/*
|
||||
* Reports garbage in the namespace identifiers (eui64, nguid, uuid).
|
||||
*/
|
||||
NVME_QUIRK_BOGUS_NID = (1 << 18),
|
||||
};
|
||||
|
||||
/*
|
||||
* Common request structure for NVMe passthrough. All drivers must have
|
||||
* this structure as the first member of their request-private data.
|
||||
*/
|
||||
struct nvme_request {
|
||||
struct nvme_command *cmd;
|
||||
union nvme_result result;
|
||||
u8 genctr;
|
||||
u8 retries;
|
||||
u8 flags;
|
||||
u16 status;
|
||||
struct nvme_ctrl *ctrl;
|
||||
};
|
||||
|
||||
/*
|
||||
* Mark a bio as coming in through the mpath node.
|
||||
*/
|
||||
#define REQ_NVME_MPATH REQ_DRV
|
||||
|
||||
enum {
|
||||
NVME_REQ_CANCELLED = (1 << 0),
|
||||
NVME_REQ_USERCMD = (1 << 1),
|
||||
};
|
||||
|
||||
static inline struct nvme_request *nvme_req(struct request *req)
|
||||
{
|
||||
return blk_mq_rq_to_pdu(req);
|
||||
}
|
||||
|
||||
static inline u16 nvme_req_qid(struct request *req)
|
||||
{
|
||||
if (!req->q->queuedata)
|
||||
return 0;
|
||||
return blk_mq_unique_tag_to_hwq(blk_mq_unique_tag(req)) + 1;
|
||||
}
|
||||
|
||||
/* The below value is the specific amount of delay needed before checking
|
||||
* readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
|
||||
* NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
|
||||
* found empirically.
|
||||
*/
|
||||
#define NVME_QUIRK_DELAY_AMOUNT 2300
|
||||
|
||||
/*
|
||||
* enum nvme_ctrl_state: Controller state
|
||||
*
|
||||
* @NVME_CTRL_NEW: New controller just allocated, initial state
|
||||
* @NVME_CTRL_LIVE: Controller is connected and I/O capable
|
||||
* @NVME_CTRL_RESETTING: Controller is resetting (or scheduled reset)
|
||||
* @NVME_CTRL_CONNECTING: Controller is disconnected, now connecting the
|
||||
* transport
|
||||
* @NVME_CTRL_DELETING: Controller is deleting (or scheduled deletion)
|
||||
* @NVME_CTRL_DELETING_NOIO: Controller is deleting and I/O is not
|
||||
* disabled/failed immediately. This state comes
|
||||
* after all async event processing took place and
|
||||
* before ns removal and the controller deletion
|
||||
* progress
|
||||
* @NVME_CTRL_DEAD: Controller is non-present/unresponsive during
|
||||
* shutdown or removal. In this case we forcibly
|
||||
* kill all inflight I/O as they have no chance to
|
||||
* complete
|
||||
*/
|
||||
enum nvme_ctrl_state {
|
||||
NVME_CTRL_NEW,
|
||||
NVME_CTRL_LIVE,
|
||||
NVME_CTRL_RESETTING,
|
||||
NVME_CTRL_CONNECTING,
|
||||
NVME_CTRL_DELETING,
|
||||
NVME_CTRL_DELETING_NOIO,
|
||||
NVME_CTRL_DEAD,
|
||||
};
|
||||
|
||||
struct nvme_fault_inject {
|
||||
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
|
||||
struct fault_attr attr;
|
||||
struct dentry *parent;
|
||||
bool dont_retry; /* DNR, do not retry */
|
||||
u16 status; /* status code */
|
||||
#endif
|
||||
};
|
||||
|
||||
struct nvme_ctrl {
|
||||
bool comp_seen;
|
||||
enum nvme_ctrl_state state;
|
||||
bool identified;
|
||||
spinlock_t lock;
|
||||
struct mutex scan_lock;
|
||||
const struct nvme_ctrl_ops *ops;
|
||||
struct request_queue *admin_q;
|
||||
struct request_queue *connect_q;
|
||||
struct request_queue *fabrics_q;
|
||||
struct device *dev;
|
||||
int instance;
|
||||
int numa_node;
|
||||
struct blk_mq_tag_set *tagset;
|
||||
struct blk_mq_tag_set *admin_tagset;
|
||||
struct list_head namespaces;
|
||||
struct rw_semaphore namespaces_rwsem;
|
||||
struct device ctrl_device;
|
||||
struct device *device; /* char device */
|
||||
struct cdev cdev;
|
||||
struct work_struct reset_work;
|
||||
struct work_struct delete_work;
|
||||
wait_queue_head_t state_wq;
|
||||
|
||||
struct nvme_subsystem *subsys;
|
||||
struct list_head subsys_entry;
|
||||
|
||||
struct opal_dev *opal_dev;
|
||||
|
||||
char name[12];
|
||||
u16 cntlid;
|
||||
|
||||
u32 ctrl_config;
|
||||
u16 mtfa;
|
||||
u32 queue_count;
|
||||
|
||||
u64 cap;
|
||||
u32 max_hw_sectors;
|
||||
u32 max_segments;
|
||||
u32 max_integrity_segments;
|
||||
#ifdef CONFIG_BLK_DEV_ZONED
|
||||
u32 max_zone_append;
|
||||
#endif
|
||||
u16 crdt[3];
|
||||
u16 oncs;
|
||||
u16 oacs;
|
||||
u16 nssa;
|
||||
u16 nr_streams;
|
||||
u16 sqsize;
|
||||
u32 max_namespaces;
|
||||
atomic_t abort_limit;
|
||||
u8 vwc;
|
||||
u32 vs;
|
||||
u32 sgls;
|
||||
u16 kas;
|
||||
u8 npss;
|
||||
u8 apsta;
|
||||
u16 wctemp;
|
||||
u16 cctemp;
|
||||
u32 oaes;
|
||||
u32 aen_result;
|
||||
u32 ctratt;
|
||||
unsigned int shutdown_timeout;
|
||||
unsigned int kato;
|
||||
bool subsystem;
|
||||
unsigned long quirks;
|
||||
struct nvme_id_power_state psd[32];
|
||||
struct nvme_effects_log *effects;
|
||||
struct xarray cels;
|
||||
struct work_struct scan_work;
|
||||
struct work_struct async_event_work;
|
||||
struct delayed_work ka_work;
|
||||
struct nvme_command ka_cmd;
|
||||
struct work_struct fw_act_work;
|
||||
unsigned long events;
|
||||
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
/* asymmetric namespace access: */
|
||||
u8 anacap;
|
||||
u8 anatt;
|
||||
u32 anagrpmax;
|
||||
u32 nanagrpid;
|
||||
struct mutex ana_lock;
|
||||
struct nvme_ana_rsp_hdr *ana_log_buf;
|
||||
size_t ana_log_size;
|
||||
struct timer_list anatt_timer;
|
||||
struct work_struct ana_work;
|
||||
#endif
|
||||
|
||||
/* Power saving configuration */
|
||||
u64 ps_max_latency_us;
|
||||
bool apst_enabled;
|
||||
|
||||
/* PCIe only: */
|
||||
u32 hmpre;
|
||||
u32 hmmin;
|
||||
u32 hmminds;
|
||||
u16 hmmaxd;
|
||||
|
||||
/* Fabrics only */
|
||||
u32 ioccsz;
|
||||
u32 iorcsz;
|
||||
u16 icdoff;
|
||||
u16 maxcmd;
|
||||
int nr_reconnects;
|
||||
struct nvmf_ctrl_options *opts;
|
||||
|
||||
struct page *discard_page;
|
||||
unsigned long discard_page_busy;
|
||||
|
||||
struct nvme_fault_inject fault_inject;
|
||||
};
|
||||
|
||||
enum nvme_iopolicy {
|
||||
NVME_IOPOLICY_NUMA,
|
||||
NVME_IOPOLICY_RR,
|
||||
};
|
||||
|
||||
struct nvme_subsystem {
|
||||
int instance;
|
||||
struct device dev;
|
||||
/*
|
||||
* Because we unregister the device on the last put we need
|
||||
* a separate refcount.
|
||||
*/
|
||||
struct kref ref;
|
||||
struct list_head entry;
|
||||
struct mutex lock;
|
||||
struct list_head ctrls;
|
||||
struct list_head nsheads;
|
||||
char subnqn[NVMF_NQN_SIZE];
|
||||
char serial[20];
|
||||
char model[40];
|
||||
char firmware_rev[8];
|
||||
u8 cmic;
|
||||
u16 vendor_id;
|
||||
u16 awupf; /* 0's based awupf value. */
|
||||
struct ida ns_ida;
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
enum nvme_iopolicy iopolicy;
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
* Container structure for uniqueue namespace identifiers.
|
||||
*/
|
||||
struct nvme_ns_ids {
|
||||
u8 eui64[8];
|
||||
u8 nguid[16];
|
||||
uuid_t uuid;
|
||||
u8 csi;
|
||||
};
|
||||
|
||||
/*
|
||||
* Anchor structure for namespaces. There is one for each namespace in a
|
||||
* NVMe subsystem that any of our controllers can see, and the namespace
|
||||
* structure for each controller is chained of it. For private namespaces
|
||||
* there is a 1:1 relation to our namespace structures, that is ->list
|
||||
* only ever has a single entry for private namespaces.
|
||||
*/
|
||||
struct nvme_ns_head {
|
||||
struct list_head list;
|
||||
struct srcu_struct srcu;
|
||||
struct nvme_subsystem *subsys;
|
||||
unsigned ns_id;
|
||||
struct nvme_ns_ids ids;
|
||||
struct list_head entry;
|
||||
struct kref ref;
|
||||
bool shared;
|
||||
int instance;
|
||||
struct nvme_effects_log *effects;
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
struct gendisk *disk;
|
||||
struct bio_list requeue_list;
|
||||
spinlock_t requeue_lock;
|
||||
struct work_struct requeue_work;
|
||||
struct mutex lock;
|
||||
unsigned long flags;
|
||||
#define NVME_NSHEAD_DISK_LIVE 0
|
||||
struct nvme_ns __rcu *current_path[];
|
||||
#endif
|
||||
};
|
||||
|
||||
enum nvme_ns_features {
|
||||
NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
|
||||
NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
|
||||
};
|
||||
|
||||
struct nvme_ns {
|
||||
struct list_head list;
|
||||
|
||||
struct nvme_ctrl *ctrl;
|
||||
struct request_queue *queue;
|
||||
struct gendisk *disk;
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
enum nvme_ana_state ana_state;
|
||||
u32 ana_grpid;
|
||||
#endif
|
||||
struct list_head siblings;
|
||||
struct nvm_dev *ndev;
|
||||
struct kref kref;
|
||||
struct nvme_ns_head *head;
|
||||
|
||||
int lba_shift;
|
||||
u16 ms;
|
||||
u16 sgs;
|
||||
u32 sws;
|
||||
u8 pi_type;
|
||||
#ifdef CONFIG_BLK_DEV_ZONED
|
||||
u64 zsze;
|
||||
#endif
|
||||
unsigned long features;
|
||||
unsigned long flags;
|
||||
#define NVME_NS_REMOVING 0
|
||||
#define NVME_NS_DEAD 1
|
||||
#define NVME_NS_ANA_PENDING 2
|
||||
|
||||
struct nvme_fault_inject fault_inject;
|
||||
|
||||
};
|
||||
|
||||
/* NVMe ns supports metadata actions by the controller (generate/strip) */
|
||||
static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
|
||||
{
|
||||
return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
|
||||
}
|
||||
|
||||
struct nvme_ctrl_ops {
|
||||
const char *name;
|
||||
struct module *module;
|
||||
unsigned int flags;
|
||||
#define NVME_F_FABRICS (1 << 0)
|
||||
#define NVME_F_METADATA_SUPPORTED (1 << 1)
|
||||
#define NVME_F_PCI_P2PDMA (1 << 2)
|
||||
int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
|
||||
int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
|
||||
int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
|
||||
void (*free_ctrl)(struct nvme_ctrl *ctrl);
|
||||
void (*submit_async_event)(struct nvme_ctrl *ctrl);
|
||||
void (*delete_ctrl)(struct nvme_ctrl *ctrl);
|
||||
void (*stop_ctrl)(struct nvme_ctrl *ctrl);
|
||||
int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
|
||||
};
|
||||
|
||||
/*
|
||||
* nvme command_id is constructed as such:
|
||||
* | xxxx | xxxxxxxxxxxx |
|
||||
* gen request tag
|
||||
*/
|
||||
#define nvme_genctr_mask(gen) (gen & 0xf)
|
||||
#define nvme_cid_install_genctr(gen) (nvme_genctr_mask(gen) << 12)
|
||||
#define nvme_genctr_from_cid(cid) ((cid & 0xf000) >> 12)
|
||||
#define nvme_tag_from_cid(cid) (cid & 0xfff)
|
||||
|
||||
static inline u16 nvme_cid(struct request *rq)
|
||||
{
|
||||
return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
|
||||
}
|
||||
|
||||
static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
|
||||
u16 command_id)
|
||||
{
|
||||
u8 genctr = nvme_genctr_from_cid(command_id);
|
||||
u16 tag = nvme_tag_from_cid(command_id);
|
||||
struct request *rq;
|
||||
|
||||
rq = blk_mq_tag_to_rq(tags, tag);
|
||||
if (unlikely(!rq)) {
|
||||
pr_err("could not locate request for tag %#x\n",
|
||||
tag);
|
||||
return NULL;
|
||||
}
|
||||
if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
|
||||
dev_err(nvme_req(rq)->ctrl->device,
|
||||
"request %#x genctr mismatch (got %#x expected %#x)\n",
|
||||
tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
|
||||
return NULL;
|
||||
}
|
||||
return rq;
|
||||
}
|
||||
|
||||
static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
|
||||
u16 command_id)
|
||||
{
|
||||
return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
|
||||
}
|
||||
|
||||
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
|
||||
void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
|
||||
const char *dev_name);
|
||||
void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
|
||||
void nvme_should_fail(struct request *req);
|
||||
#else
|
||||
static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
|
||||
const char *dev_name)
|
||||
{
|
||||
}
|
||||
static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
|
||||
{
|
||||
}
|
||||
static inline void nvme_should_fail(struct request *req) {}
|
||||
#endif
|
||||
|
||||
static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
if (!ctrl->subsystem)
|
||||
return -ENOTTY;
|
||||
return ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a 512B sector number to a device logical block number.
|
||||
*/
|
||||
static inline u64 nvme_sect_to_lba(struct nvme_ns *ns, sector_t sector)
|
||||
{
|
||||
return sector >> (ns->lba_shift - SECTOR_SHIFT);
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a device logical block number to a 512B sector number.
|
||||
*/
|
||||
static inline sector_t nvme_lba_to_sect(struct nvme_ns *ns, u64 lba)
|
||||
{
|
||||
return lba << (ns->lba_shift - SECTOR_SHIFT);
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert byte length to nvme's 0-based num dwords
|
||||
*/
|
||||
static inline u32 nvme_bytes_to_numd(size_t len)
|
||||
{
|
||||
return (len >> 2) - 1;
|
||||
}
|
||||
|
||||
static inline bool nvme_is_ana_error(u16 status)
|
||||
{
|
||||
switch (status & 0x7ff) {
|
||||
case NVME_SC_ANA_TRANSITION:
|
||||
case NVME_SC_ANA_INACCESSIBLE:
|
||||
case NVME_SC_ANA_PERSISTENT_LOSS:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
static inline bool nvme_is_path_error(u16 status)
|
||||
{
|
||||
/* check for a status code type of 'path related status' */
|
||||
return (status & 0x700) == 0x300;
|
||||
}
|
||||
|
||||
/*
|
||||
* Fill in the status and result information from the CQE, and then figure out
|
||||
* if blk-mq will need to use IPI magic to complete the request, and if yes do
|
||||
* so. If not let the caller complete the request without an indirect function
|
||||
* call.
|
||||
*/
|
||||
static inline bool nvme_try_complete_req(struct request *req, __le16 status,
|
||||
union nvme_result result)
|
||||
{
|
||||
struct nvme_request *rq = nvme_req(req);
|
||||
|
||||
rq->status = le16_to_cpu(status) >> 1;
|
||||
rq->result = result;
|
||||
/* inject error when permitted by fault injection framework */
|
||||
nvme_should_fail(req);
|
||||
if (unlikely(blk_should_fake_timeout(req->q)))
|
||||
return true;
|
||||
return blk_mq_complete_request_remote(req);
|
||||
}
|
||||
|
||||
static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
get_device(ctrl->device);
|
||||
}
|
||||
|
||||
static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
put_device(ctrl->device);
|
||||
}
|
||||
|
||||
static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
|
||||
{
|
||||
return !qid &&
|
||||
nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
|
||||
}
|
||||
|
||||
void nvme_complete_rq(struct request *req);
|
||||
bool nvme_cancel_request(struct request *req, void *data, bool reserved);
|
||||
void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
|
||||
void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
|
||||
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
|
||||
enum nvme_ctrl_state new_state);
|
||||
bool nvme_wait_reset(struct nvme_ctrl *ctrl);
|
||||
int nvme_disable_ctrl(struct nvme_ctrl *ctrl);
|
||||
int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
|
||||
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl);
|
||||
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
|
||||
const struct nvme_ctrl_ops *ops, unsigned long quirks);
|
||||
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
|
||||
void nvme_start_ctrl(struct nvme_ctrl *ctrl);
|
||||
void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
|
||||
int nvme_init_identify(struct nvme_ctrl *ctrl);
|
||||
|
||||
void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
|
||||
|
||||
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
|
||||
bool send);
|
||||
|
||||
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
|
||||
volatile union nvme_result *res);
|
||||
|
||||
void nvme_stop_queues(struct nvme_ctrl *ctrl);
|
||||
void nvme_start_queues(struct nvme_ctrl *ctrl);
|
||||
void nvme_kill_queues(struct nvme_ctrl *ctrl);
|
||||
void nvme_sync_queues(struct nvme_ctrl *ctrl);
|
||||
void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
|
||||
void nvme_unfreeze(struct nvme_ctrl *ctrl);
|
||||
void nvme_wait_freeze(struct nvme_ctrl *ctrl);
|
||||
int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
|
||||
void nvme_start_freeze(struct nvme_ctrl *ctrl);
|
||||
|
||||
#define NVME_QID_ANY -1
|
||||
struct request *nvme_alloc_request(struct request_queue *q,
|
||||
struct nvme_command *cmd, blk_mq_req_flags_t flags);
|
||||
struct request *nvme_alloc_request_qid(struct request_queue *q,
|
||||
struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid);
|
||||
void nvme_cleanup_cmd(struct request *req);
|
||||
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
|
||||
struct nvme_command *cmd);
|
||||
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
||||
void *buf, unsigned bufflen);
|
||||
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
||||
union nvme_result *result, void *buffer, unsigned bufflen,
|
||||
unsigned timeout, int qid, int at_head,
|
||||
blk_mq_req_flags_t flags, bool poll);
|
||||
int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
|
||||
unsigned int dword11, void *buffer, size_t buflen,
|
||||
u32 *result);
|
||||
int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
|
||||
unsigned int dword11, void *buffer, size_t buflen,
|
||||
u32 *result);
|
||||
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
|
||||
void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
|
||||
int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
|
||||
int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
|
||||
int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
|
||||
int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
|
||||
|
||||
int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
|
||||
void *log, size_t size, u64 offset);
|
||||
struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
|
||||
struct nvme_ns_head **head, int *srcu_idx);
|
||||
void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx);
|
||||
|
||||
extern const struct attribute_group *nvme_ns_id_attr_groups[];
|
||||
extern const struct block_device_operations nvme_ns_head_ops;
|
||||
|
||||
#ifdef CONFIG_NVME_MULTIPATH
|
||||
static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
return ctrl->ana_log_buf != NULL;
|
||||
}
|
||||
|
||||
void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
|
||||
void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
|
||||
void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
|
||||
void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
|
||||
struct nvme_ctrl *ctrl, int *flags);
|
||||
void nvme_failover_req(struct request *req);
|
||||
void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
|
||||
int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
|
||||
void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id);
|
||||
void nvme_mpath_remove_disk(struct nvme_ns_head *head);
|
||||
int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
|
||||
void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
|
||||
void nvme_mpath_update(struct nvme_ctrl *ctrl);
|
||||
void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
|
||||
void nvme_mpath_stop(struct nvme_ctrl *ctrl);
|
||||
bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
|
||||
void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
|
||||
struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
|
||||
blk_qc_t nvme_ns_head_submit_bio(struct bio *bio);
|
||||
|
||||
static inline void nvme_mpath_check_last_path(struct nvme_ns *ns)
|
||||
{
|
||||
struct nvme_ns_head *head = ns->head;
|
||||
|
||||
if (head->disk && list_empty(&head->list))
|
||||
kblockd_schedule_work(&head->requeue_work);
|
||||
}
|
||||
|
||||
static inline void nvme_trace_bio_complete(struct request *req,
|
||||
blk_status_t status)
|
||||
{
|
||||
struct nvme_ns *ns = req->q->queuedata;
|
||||
|
||||
if (req->cmd_flags & REQ_NVME_MPATH)
|
||||
trace_block_bio_complete(ns->head->disk->queue, req->bio);
|
||||
}
|
||||
|
||||
extern struct device_attribute dev_attr_ana_grpid;
|
||||
extern struct device_attribute dev_attr_ana_state;
|
||||
extern struct device_attribute subsys_attr_iopolicy;
|
||||
|
||||
#else
|
||||
static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
/*
|
||||
* Without the multipath code enabled, multiple controller per subsystems are
|
||||
* visible as devices and thus we cannot use the subsystem instance.
|
||||
*/
|
||||
static inline void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
|
||||
struct nvme_ctrl *ctrl, int *flags)
|
||||
{
|
||||
sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
|
||||
}
|
||||
|
||||
static inline void nvme_failover_req(struct request *req)
|
||||
{
|
||||
}
|
||||
static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
}
|
||||
static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
|
||||
struct nvme_ns_head *head)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
static inline void nvme_mpath_add_disk(struct nvme_ns *ns,
|
||||
struct nvme_id_ns *id)
|
||||
{
|
||||
}
|
||||
static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
|
||||
{
|
||||
}
|
||||
static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
}
|
||||
static inline void nvme_mpath_check_last_path(struct nvme_ns *ns)
|
||||
{
|
||||
}
|
||||
static inline void nvme_trace_bio_complete(struct request *req,
|
||||
blk_status_t status)
|
||||
{
|
||||
}
|
||||
static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
}
|
||||
static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
|
||||
struct nvme_id_ctrl *id)
|
||||
{
|
||||
if (ctrl->subsys->cmic & (1 << 3))
|
||||
dev_warn(ctrl->device,
|
||||
"Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
|
||||
return 0;
|
||||
}
|
||||
static inline void nvme_mpath_update(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
}
|
||||
static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
}
|
||||
static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
}
|
||||
static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
|
||||
{
|
||||
}
|
||||
static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
|
||||
{
|
||||
}
|
||||
static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
|
||||
{
|
||||
}
|
||||
#endif /* CONFIG_NVME_MULTIPATH */
|
||||
|
||||
int nvme_revalidate_zones(struct nvme_ns *ns);
|
||||
#ifdef CONFIG_BLK_DEV_ZONED
|
||||
int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf);
|
||||
int nvme_report_zones(struct gendisk *disk, sector_t sector,
|
||||
unsigned int nr_zones, report_zones_cb cb, void *data);
|
||||
|
||||
blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
|
||||
struct nvme_command *cmnd,
|
||||
enum nvme_zone_mgmt_action action);
|
||||
#else
|
||||
#define nvme_report_zones NULL
|
||||
|
||||
static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
|
||||
struct request *req, struct nvme_command *cmnd,
|
||||
enum nvme_zone_mgmt_action action)
|
||||
{
|
||||
return BLK_STS_NOTSUPP;
|
||||
}
|
||||
|
||||
static inline int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf)
|
||||
{
|
||||
dev_warn(ns->ctrl->device,
|
||||
"Please enable CONFIG_BLK_DEV_ZONED to support ZNS devices\n");
|
||||
return -EPROTONOSUPPORT;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_NVM
|
||||
int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node);
|
||||
void nvme_nvm_unregister(struct nvme_ns *ns);
|
||||
extern const struct attribute_group nvme_nvm_attr_group;
|
||||
int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd, unsigned long arg);
|
||||
#else
|
||||
static inline int nvme_nvm_register(struct nvme_ns *ns, char *disk_name,
|
||||
int node)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void nvme_nvm_unregister(struct nvme_ns *ns) {};
|
||||
static inline int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd,
|
||||
unsigned long arg)
|
||||
{
|
||||
return -ENOTTY;
|
||||
}
|
||||
#endif /* CONFIG_NVM */
|
||||
|
||||
static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
|
||||
{
|
||||
return dev_to_disk(dev)->private_data;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_NVME_HWMON
|
||||
int nvme_hwmon_init(struct nvme_ctrl *ctrl);
|
||||
#else
|
||||
static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
|
||||
u8 opcode);
|
||||
void nvme_execute_passthru_rq(struct request *rq);
|
||||
struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
|
||||
struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
|
||||
void nvme_put_ns(struct nvme_ns *ns);
|
||||
|
||||
#endif /* _NVME_H */
|
3310
feed/kmod-nvme/src/pci.c
Normal file
3310
feed/kmod-nvme/src/pci.c
Normal file
|
@ -0,0 +1,3310 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* NVM Express device driver
|
||||
* Copyright (c) 2011-2014, Intel Corporation.
|
||||
*/
|
||||
|
||||
#include <linux/acpi.h>
|
||||
#include <linux/aer.h>
|
||||
#include <linux/async.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/blk-mq.h>
|
||||
#include <linux/blk-mq-pci.h>
|
||||
#include <linux/dmi.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/once.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/suspend.h>
|
||||
#include <linux/t10-pi.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/io-64-nonatomic-lo-hi.h>
|
||||
#include <linux/io-64-nonatomic-hi-lo.h>
|
||||
#include <linux/sed-opal.h>
|
||||
#include <linux/pci-p2pdma.h>
|
||||
|
||||
#include "trace.h"
|
||||
#include "nvme.h"
|
||||
|
||||
#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
|
||||
#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
|
||||
|
||||
#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
|
||||
|
||||
/*
|
||||
* These can be higher, but we need to ensure that any command doesn't
|
||||
* require an sg allocation that needs more than a page of data.
|
||||
*/
|
||||
#define NVME_MAX_KB_SZ 4096
|
||||
#define NVME_MAX_SEGS 127
|
||||
|
||||
static int use_threaded_interrupts;
|
||||
module_param(use_threaded_interrupts, int, 0);
|
||||
|
||||
static bool use_cmb_sqes = true;
|
||||
module_param(use_cmb_sqes, bool, 0444);
|
||||
MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
|
||||
|
||||
static unsigned int max_host_mem_size_mb = 128;
|
||||
module_param(max_host_mem_size_mb, uint, 0444);
|
||||
MODULE_PARM_DESC(max_host_mem_size_mb,
|
||||
"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
|
||||
|
||||
static unsigned int sgl_threshold = SZ_32K;
|
||||
module_param(sgl_threshold, uint, 0644);
|
||||
MODULE_PARM_DESC(sgl_threshold,
|
||||
"Use SGLs when average request segment size is larger or equal to "
|
||||
"this size. Use 0 to disable SGLs.");
|
||||
|
||||
static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
|
||||
static const struct kernel_param_ops io_queue_depth_ops = {
|
||||
.set = io_queue_depth_set,
|
||||
.get = param_get_uint,
|
||||
};
|
||||
|
||||
static unsigned int io_queue_depth = 1024;
|
||||
module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
|
||||
MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
|
||||
|
||||
static int io_queue_count_set(const char *val, const struct kernel_param *kp)
|
||||
{
|
||||
unsigned int n;
|
||||
int ret;
|
||||
|
||||
ret = kstrtouint(val, 10, &n);
|
||||
if (ret != 0 || n > num_possible_cpus())
|
||||
return -EINVAL;
|
||||
return param_set_uint(val, kp);
|
||||
}
|
||||
|
||||
static const struct kernel_param_ops io_queue_count_ops = {
|
||||
.set = io_queue_count_set,
|
||||
.get = param_get_uint,
|
||||
};
|
||||
|
||||
static unsigned int write_queues;
|
||||
module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
|
||||
MODULE_PARM_DESC(write_queues,
|
||||
"Number of queues to use for writes. If not set, reads and writes "
|
||||
"will share a queue set.");
|
||||
|
||||
static unsigned int poll_queues;
|
||||
module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
|
||||
MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
|
||||
|
||||
static bool noacpi;
|
||||
module_param(noacpi, bool, 0444);
|
||||
MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
|
||||
|
||||
struct nvme_dev;
|
||||
struct nvme_queue;
|
||||
|
||||
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
|
||||
static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
|
||||
|
||||
/*
|
||||
* Represents an NVM Express device. Each nvme_dev is a PCI function.
|
||||
*/
|
||||
struct nvme_dev {
|
||||
struct nvme_queue *queues;
|
||||
struct blk_mq_tag_set tagset;
|
||||
struct blk_mq_tag_set admin_tagset;
|
||||
u32 __iomem *dbs;
|
||||
struct device *dev;
|
||||
struct dma_pool *prp_page_pool;
|
||||
struct dma_pool *prp_small_pool;
|
||||
unsigned online_queues;
|
||||
unsigned max_qid;
|
||||
unsigned io_queues[HCTX_MAX_TYPES];
|
||||
unsigned int num_vecs;
|
||||
u32 q_depth;
|
||||
int io_sqes;
|
||||
u32 db_stride;
|
||||
void __iomem *bar;
|
||||
unsigned long bar_mapped_size;
|
||||
struct work_struct remove_work;
|
||||
struct mutex shutdown_lock;
|
||||
bool subsystem;
|
||||
u64 cmb_size;
|
||||
bool cmb_use_sqes;
|
||||
u32 cmbsz;
|
||||
u32 cmbloc;
|
||||
struct nvme_ctrl ctrl;
|
||||
u32 last_ps;
|
||||
|
||||
mempool_t *iod_mempool;
|
||||
|
||||
/* shadow doorbell buffer support: */
|
||||
u32 *dbbuf_dbs;
|
||||
dma_addr_t dbbuf_dbs_dma_addr;
|
||||
u32 *dbbuf_eis;
|
||||
dma_addr_t dbbuf_eis_dma_addr;
|
||||
|
||||
/* host memory buffer support: */
|
||||
u64 host_mem_size;
|
||||
u32 nr_host_mem_descs;
|
||||
dma_addr_t host_mem_descs_dma;
|
||||
struct nvme_host_mem_buf_desc *host_mem_descs;
|
||||
void **host_mem_desc_bufs;
|
||||
unsigned int nr_allocated_queues;
|
||||
unsigned int nr_write_queues;
|
||||
unsigned int nr_poll_queues;
|
||||
};
|
||||
|
||||
static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
|
||||
{
|
||||
int ret;
|
||||
u32 n;
|
||||
|
||||
ret = kstrtou32(val, 10, &n);
|
||||
if (ret != 0 || n < 2)
|
||||
return -EINVAL;
|
||||
|
||||
return param_set_uint(val, kp);
|
||||
}
|
||||
|
||||
static inline unsigned int sq_idx(unsigned int qid, u32 stride)
|
||||
{
|
||||
return qid * 2 * stride;
|
||||
}
|
||||
|
||||
static inline unsigned int cq_idx(unsigned int qid, u32 stride)
|
||||
{
|
||||
return (qid * 2 + 1) * stride;
|
||||
}
|
||||
|
||||
static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
return container_of(ctrl, struct nvme_dev, ctrl);
|
||||
}
|
||||
|
||||
/*
|
||||
* An NVM Express queue. Each device has at least two (one for admin
|
||||
* commands and one for I/O commands).
|
||||
*/
|
||||
struct nvme_queue {
|
||||
struct nvme_dev *dev;
|
||||
spinlock_t sq_lock;
|
||||
void *sq_cmds;
|
||||
/* only used for poll queues: */
|
||||
spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
|
||||
struct nvme_completion *cqes;
|
||||
dma_addr_t sq_dma_addr;
|
||||
dma_addr_t cq_dma_addr;
|
||||
u32 __iomem *q_db;
|
||||
u32 q_depth;
|
||||
u16 cq_vector;
|
||||
u16 sq_tail;
|
||||
u16 last_sq_tail;
|
||||
u16 cq_head;
|
||||
u16 qid;
|
||||
u8 cq_phase;
|
||||
u8 sqes;
|
||||
unsigned long flags;
|
||||
#define NVMEQ_ENABLED 0
|
||||
#define NVMEQ_SQ_CMB 1
|
||||
#define NVMEQ_DELETE_ERROR 2
|
||||
#define NVMEQ_POLLED 3
|
||||
u32 *dbbuf_sq_db;
|
||||
u32 *dbbuf_cq_db;
|
||||
u32 *dbbuf_sq_ei;
|
||||
u32 *dbbuf_cq_ei;
|
||||
struct completion delete_done;
|
||||
};
|
||||
|
||||
/*
|
||||
* The nvme_iod describes the data in an I/O.
|
||||
*
|
||||
* The sg pointer contains the list of PRP/SGL chunk allocations in addition
|
||||
* to the actual struct scatterlist.
|
||||
*/
|
||||
struct nvme_iod {
|
||||
struct nvme_request req;
|
||||
struct nvme_command cmd;
|
||||
struct nvme_queue *nvmeq;
|
||||
bool use_sgl;
|
||||
int aborted;
|
||||
int npages; /* In the PRP list. 0 means small pool in use */
|
||||
int nents; /* Used in scatterlist */
|
||||
dma_addr_t first_dma;
|
||||
unsigned int dma_len; /* length of single DMA segment mapping */
|
||||
dma_addr_t meta_dma;
|
||||
struct scatterlist *sg;
|
||||
};
|
||||
|
||||
static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
|
||||
{
|
||||
return dev->nr_allocated_queues * 8 * dev->db_stride;
|
||||
}
|
||||
|
||||
static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
|
||||
{
|
||||
unsigned int mem_size = nvme_dbbuf_size(dev);
|
||||
|
||||
if (dev->dbbuf_dbs)
|
||||
return 0;
|
||||
|
||||
dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
|
||||
&dev->dbbuf_dbs_dma_addr,
|
||||
GFP_KERNEL);
|
||||
if (!dev->dbbuf_dbs)
|
||||
return -ENOMEM;
|
||||
dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
|
||||
&dev->dbbuf_eis_dma_addr,
|
||||
GFP_KERNEL);
|
||||
if (!dev->dbbuf_eis) {
|
||||
dma_free_coherent(dev->dev, mem_size,
|
||||
dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
|
||||
dev->dbbuf_dbs = NULL;
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
|
||||
{
|
||||
unsigned int mem_size = nvme_dbbuf_size(dev);
|
||||
|
||||
if (dev->dbbuf_dbs) {
|
||||
dma_free_coherent(dev->dev, mem_size,
|
||||
dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
|
||||
dev->dbbuf_dbs = NULL;
|
||||
}
|
||||
if (dev->dbbuf_eis) {
|
||||
dma_free_coherent(dev->dev, mem_size,
|
||||
dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
|
||||
dev->dbbuf_eis = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static void nvme_dbbuf_init(struct nvme_dev *dev,
|
||||
struct nvme_queue *nvmeq, int qid)
|
||||
{
|
||||
if (!dev->dbbuf_dbs || !qid)
|
||||
return;
|
||||
|
||||
nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
|
||||
nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
|
||||
nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
|
||||
nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
|
||||
}
|
||||
|
||||
static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
|
||||
{
|
||||
if (!nvmeq->qid)
|
||||
return;
|
||||
|
||||
nvmeq->dbbuf_sq_db = NULL;
|
||||
nvmeq->dbbuf_cq_db = NULL;
|
||||
nvmeq->dbbuf_sq_ei = NULL;
|
||||
nvmeq->dbbuf_cq_ei = NULL;
|
||||
}
|
||||
|
||||
static void nvme_dbbuf_set(struct nvme_dev *dev)
|
||||
{
|
||||
struct nvme_command c;
|
||||
unsigned int i;
|
||||
|
||||
if (!dev->dbbuf_dbs)
|
||||
return;
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.dbbuf.opcode = nvme_admin_dbbuf;
|
||||
c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
|
||||
c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
|
||||
|
||||
if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
|
||||
dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
|
||||
/* Free memory and continue on */
|
||||
nvme_dbbuf_dma_free(dev);
|
||||
|
||||
for (i = 1; i <= dev->online_queues; i++)
|
||||
nvme_dbbuf_free(&dev->queues[i]);
|
||||
}
|
||||
}
|
||||
|
||||
static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
|
||||
{
|
||||
return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
|
||||
}
|
||||
|
||||
/* Update dbbuf and return true if an MMIO is required */
|
||||
static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
|
||||
volatile u32 *dbbuf_ei)
|
||||
{
|
||||
if (dbbuf_db) {
|
||||
u16 old_value;
|
||||
|
||||
/*
|
||||
* Ensure that the queue is written before updating
|
||||
* the doorbell in memory
|
||||
*/
|
||||
wmb();
|
||||
|
||||
old_value = *dbbuf_db;
|
||||
*dbbuf_db = value;
|
||||
|
||||
/*
|
||||
* Ensure that the doorbell is updated before reading the event
|
||||
* index from memory. The controller needs to provide similar
|
||||
* ordering to ensure the envent index is updated before reading
|
||||
* the doorbell.
|
||||
*/
|
||||
mb();
|
||||
|
||||
if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Will slightly overestimate the number of pages needed. This is OK
|
||||
* as it only leads to a small amount of wasted memory for the lifetime of
|
||||
* the I/O.
|
||||
*/
|
||||
static int nvme_pci_npages_prp(void)
|
||||
{
|
||||
unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
|
||||
NVME_CTRL_PAGE_SIZE);
|
||||
return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculates the number of pages needed for the SGL segments. For example a 4k
|
||||
* page can accommodate 256 SGL descriptors.
|
||||
*/
|
||||
static int nvme_pci_npages_sgl(void)
|
||||
{
|
||||
return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
|
||||
PAGE_SIZE);
|
||||
}
|
||||
|
||||
static size_t nvme_pci_iod_alloc_size(void)
|
||||
{
|
||||
size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
|
||||
|
||||
return sizeof(__le64 *) * npages +
|
||||
sizeof(struct scatterlist) * NVME_MAX_SEGS;
|
||||
}
|
||||
|
||||
static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
||||
unsigned int hctx_idx)
|
||||
{
|
||||
struct nvme_dev *dev = data;
|
||||
struct nvme_queue *nvmeq = &dev->queues[0];
|
||||
|
||||
WARN_ON(hctx_idx != 0);
|
||||
WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
|
||||
|
||||
hctx->driver_data = nvmeq;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
||||
unsigned int hctx_idx)
|
||||
{
|
||||
struct nvme_dev *dev = data;
|
||||
struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
|
||||
|
||||
WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
|
||||
hctx->driver_data = nvmeq;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
|
||||
unsigned int hctx_idx, unsigned int numa_node)
|
||||
{
|
||||
struct nvme_dev *dev = set->driver_data;
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
|
||||
struct nvme_queue *nvmeq = &dev->queues[queue_idx];
|
||||
|
||||
BUG_ON(!nvmeq);
|
||||
iod->nvmeq = nvmeq;
|
||||
|
||||
nvme_req(req)->ctrl = &dev->ctrl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int queue_irq_offset(struct nvme_dev *dev)
|
||||
{
|
||||
/* if we have more than 1 vec, admin queue offsets us by 1 */
|
||||
if (dev->num_vecs > 1)
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
|
||||
{
|
||||
struct nvme_dev *dev = set->driver_data;
|
||||
int i, qoff, offset;
|
||||
|
||||
offset = queue_irq_offset(dev);
|
||||
for (i = 0, qoff = 0; i < set->nr_maps; i++) {
|
||||
struct blk_mq_queue_map *map = &set->map[i];
|
||||
|
||||
map->nr_queues = dev->io_queues[i];
|
||||
if (!map->nr_queues) {
|
||||
BUG_ON(i == HCTX_TYPE_DEFAULT);
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* The poll queue(s) doesn't have an IRQ (and hence IRQ
|
||||
* affinity), so use the regular blk-mq cpu mapping
|
||||
*/
|
||||
map->queue_offset = qoff;
|
||||
if (i != HCTX_TYPE_POLL && offset)
|
||||
blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
|
||||
else
|
||||
blk_mq_map_queues(map);
|
||||
qoff += map->nr_queues;
|
||||
offset += map->nr_queues;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write sq tail if we are asked to, or if the next command would wrap.
|
||||
*/
|
||||
static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
|
||||
{
|
||||
if (!write_sq) {
|
||||
u16 next_tail = nvmeq->sq_tail + 1;
|
||||
|
||||
if (next_tail == nvmeq->q_depth)
|
||||
next_tail = 0;
|
||||
if (next_tail != nvmeq->last_sq_tail)
|
||||
return;
|
||||
}
|
||||
|
||||
if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
|
||||
nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
|
||||
writel(nvmeq->sq_tail, nvmeq->q_db);
|
||||
nvmeq->last_sq_tail = nvmeq->sq_tail;
|
||||
}
|
||||
|
||||
/**
|
||||
* nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
|
||||
* @nvmeq: The queue to use
|
||||
* @cmd: The command to send
|
||||
* @write_sq: whether to write to the SQ doorbell
|
||||
*/
|
||||
static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
|
||||
bool write_sq)
|
||||
{
|
||||
spin_lock(&nvmeq->sq_lock);
|
||||
memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
|
||||
cmd, sizeof(*cmd));
|
||||
if (++nvmeq->sq_tail == nvmeq->q_depth)
|
||||
nvmeq->sq_tail = 0;
|
||||
nvme_write_sq_db(nvmeq, write_sq);
|
||||
spin_unlock(&nvmeq->sq_lock);
|
||||
}
|
||||
|
||||
static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
|
||||
{
|
||||
struct nvme_queue *nvmeq = hctx->driver_data;
|
||||
|
||||
spin_lock(&nvmeq->sq_lock);
|
||||
if (nvmeq->sq_tail != nvmeq->last_sq_tail)
|
||||
nvme_write_sq_db(nvmeq, true);
|
||||
spin_unlock(&nvmeq->sq_lock);
|
||||
}
|
||||
|
||||
static void **nvme_pci_iod_list(struct request *req)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
|
||||
}
|
||||
|
||||
static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
int nseg = blk_rq_nr_phys_segments(req);
|
||||
unsigned int avg_seg_size;
|
||||
|
||||
avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
|
||||
|
||||
if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
|
||||
return false;
|
||||
if (!iod->nvmeq->qid)
|
||||
return false;
|
||||
if (!sgl_threshold || avg_seg_size < sgl_threshold)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
|
||||
{
|
||||
const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
dma_addr_t dma_addr = iod->first_dma;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < iod->npages; i++) {
|
||||
__le64 *prp_list = nvme_pci_iod_list(req)[i];
|
||||
dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
|
||||
|
||||
dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
|
||||
dma_addr = next_dma_addr;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
|
||||
{
|
||||
const int last_sg = SGES_PER_PAGE - 1;
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
dma_addr_t dma_addr = iod->first_dma;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < iod->npages; i++) {
|
||||
struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
|
||||
dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
|
||||
|
||||
dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
|
||||
dma_addr = next_dma_addr;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
|
||||
if (is_pci_p2pdma_page(sg_page(iod->sg)))
|
||||
pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
|
||||
rq_dma_dir(req));
|
||||
else
|
||||
dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
|
||||
}
|
||||
|
||||
static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
|
||||
if (iod->dma_len) {
|
||||
dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
|
||||
rq_dma_dir(req));
|
||||
return;
|
||||
}
|
||||
|
||||
WARN_ON_ONCE(!iod->nents);
|
||||
|
||||
nvme_unmap_sg(dev, req);
|
||||
if (iod->npages == 0)
|
||||
dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
|
||||
iod->first_dma);
|
||||
else if (iod->use_sgl)
|
||||
nvme_free_sgls(dev, req);
|
||||
else
|
||||
nvme_free_prps(dev, req);
|
||||
mempool_free(iod->sg, dev->iod_mempool);
|
||||
}
|
||||
|
||||
static void nvme_print_sgl(struct scatterlist *sgl, int nents)
|
||||
{
|
||||
int i;
|
||||
struct scatterlist *sg;
|
||||
|
||||
for_each_sg(sgl, sg, nents, i) {
|
||||
dma_addr_t phys = sg_phys(sg);
|
||||
pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
|
||||
"dma_address:%pad dma_length:%d\n",
|
||||
i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
|
||||
sg_dma_len(sg));
|
||||
}
|
||||
}
|
||||
|
||||
static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
|
||||
struct request *req, struct nvme_rw_command *cmnd)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
struct dma_pool *pool;
|
||||
int length = blk_rq_payload_bytes(req);
|
||||
struct scatterlist *sg = iod->sg;
|
||||
int dma_len = sg_dma_len(sg);
|
||||
u64 dma_addr = sg_dma_address(sg);
|
||||
int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
|
||||
__le64 *prp_list;
|
||||
void **list = nvme_pci_iod_list(req);
|
||||
dma_addr_t prp_dma;
|
||||
int nprps, i;
|
||||
|
||||
length -= (NVME_CTRL_PAGE_SIZE - offset);
|
||||
if (length <= 0) {
|
||||
iod->first_dma = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
|
||||
if (dma_len) {
|
||||
dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
|
||||
} else {
|
||||
sg = sg_next(sg);
|
||||
dma_addr = sg_dma_address(sg);
|
||||
dma_len = sg_dma_len(sg);
|
||||
}
|
||||
|
||||
if (length <= NVME_CTRL_PAGE_SIZE) {
|
||||
iod->first_dma = dma_addr;
|
||||
goto done;
|
||||
}
|
||||
|
||||
nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
|
||||
if (nprps <= (256 / 8)) {
|
||||
pool = dev->prp_small_pool;
|
||||
iod->npages = 0;
|
||||
} else {
|
||||
pool = dev->prp_page_pool;
|
||||
iod->npages = 1;
|
||||
}
|
||||
|
||||
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
|
||||
if (!prp_list) {
|
||||
iod->first_dma = dma_addr;
|
||||
iod->npages = -1;
|
||||
return BLK_STS_RESOURCE;
|
||||
}
|
||||
list[0] = prp_list;
|
||||
iod->first_dma = prp_dma;
|
||||
i = 0;
|
||||
for (;;) {
|
||||
if (i == NVME_CTRL_PAGE_SIZE >> 3) {
|
||||
__le64 *old_prp_list = prp_list;
|
||||
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
|
||||
if (!prp_list)
|
||||
goto free_prps;
|
||||
list[iod->npages++] = prp_list;
|
||||
prp_list[0] = old_prp_list[i - 1];
|
||||
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
|
||||
i = 1;
|
||||
}
|
||||
prp_list[i++] = cpu_to_le64(dma_addr);
|
||||
dma_len -= NVME_CTRL_PAGE_SIZE;
|
||||
dma_addr += NVME_CTRL_PAGE_SIZE;
|
||||
length -= NVME_CTRL_PAGE_SIZE;
|
||||
if (length <= 0)
|
||||
break;
|
||||
if (dma_len > 0)
|
||||
continue;
|
||||
if (unlikely(dma_len < 0))
|
||||
goto bad_sgl;
|
||||
sg = sg_next(sg);
|
||||
dma_addr = sg_dma_address(sg);
|
||||
dma_len = sg_dma_len(sg);
|
||||
}
|
||||
done:
|
||||
cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
|
||||
cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
|
||||
return BLK_STS_OK;
|
||||
free_prps:
|
||||
nvme_free_prps(dev, req);
|
||||
return BLK_STS_RESOURCE;
|
||||
bad_sgl:
|
||||
WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
|
||||
"Invalid SGL for payload:%d nents:%d\n",
|
||||
blk_rq_payload_bytes(req), iod->nents);
|
||||
return BLK_STS_IOERR;
|
||||
}
|
||||
|
||||
static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
|
||||
struct scatterlist *sg)
|
||||
{
|
||||
sge->addr = cpu_to_le64(sg_dma_address(sg));
|
||||
sge->length = cpu_to_le32(sg_dma_len(sg));
|
||||
sge->type = NVME_SGL_FMT_DATA_DESC << 4;
|
||||
}
|
||||
|
||||
static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
|
||||
dma_addr_t dma_addr, int entries)
|
||||
{
|
||||
sge->addr = cpu_to_le64(dma_addr);
|
||||
if (entries < SGES_PER_PAGE) {
|
||||
sge->length = cpu_to_le32(entries * sizeof(*sge));
|
||||
sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
|
||||
} else {
|
||||
sge->length = cpu_to_le32(PAGE_SIZE);
|
||||
sge->type = NVME_SGL_FMT_SEG_DESC << 4;
|
||||
}
|
||||
}
|
||||
|
||||
static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
|
||||
struct request *req, struct nvme_rw_command *cmd, int entries)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
struct dma_pool *pool;
|
||||
struct nvme_sgl_desc *sg_list;
|
||||
struct scatterlist *sg = iod->sg;
|
||||
dma_addr_t sgl_dma;
|
||||
int i = 0;
|
||||
|
||||
/* setting the transfer type as SGL */
|
||||
cmd->flags = NVME_CMD_SGL_METABUF;
|
||||
|
||||
if (entries == 1) {
|
||||
nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
|
||||
return BLK_STS_OK;
|
||||
}
|
||||
|
||||
if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
|
||||
pool = dev->prp_small_pool;
|
||||
iod->npages = 0;
|
||||
} else {
|
||||
pool = dev->prp_page_pool;
|
||||
iod->npages = 1;
|
||||
}
|
||||
|
||||
sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
|
||||
if (!sg_list) {
|
||||
iod->npages = -1;
|
||||
return BLK_STS_RESOURCE;
|
||||
}
|
||||
|
||||
nvme_pci_iod_list(req)[0] = sg_list;
|
||||
iod->first_dma = sgl_dma;
|
||||
|
||||
nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
|
||||
|
||||
do {
|
||||
if (i == SGES_PER_PAGE) {
|
||||
struct nvme_sgl_desc *old_sg_desc = sg_list;
|
||||
struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
|
||||
|
||||
sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
|
||||
if (!sg_list)
|
||||
goto free_sgls;
|
||||
|
||||
i = 0;
|
||||
nvme_pci_iod_list(req)[iod->npages++] = sg_list;
|
||||
sg_list[i++] = *link;
|
||||
nvme_pci_sgl_set_seg(link, sgl_dma, entries);
|
||||
}
|
||||
|
||||
nvme_pci_sgl_set_data(&sg_list[i++], sg);
|
||||
sg = sg_next(sg);
|
||||
} while (--entries > 0);
|
||||
|
||||
return BLK_STS_OK;
|
||||
free_sgls:
|
||||
nvme_free_sgls(dev, req);
|
||||
return BLK_STS_RESOURCE;
|
||||
}
|
||||
|
||||
static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
|
||||
struct request *req, struct nvme_rw_command *cmnd,
|
||||
struct bio_vec *bv)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
|
||||
unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
|
||||
|
||||
iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
|
||||
if (dma_mapping_error(dev->dev, iod->first_dma))
|
||||
return BLK_STS_RESOURCE;
|
||||
iod->dma_len = bv->bv_len;
|
||||
|
||||
cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
|
||||
if (bv->bv_len > first_prp_len)
|
||||
cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
|
||||
return BLK_STS_OK;
|
||||
}
|
||||
|
||||
static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
|
||||
struct request *req, struct nvme_rw_command *cmnd,
|
||||
struct bio_vec *bv)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
|
||||
iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
|
||||
if (dma_mapping_error(dev->dev, iod->first_dma))
|
||||
return BLK_STS_RESOURCE;
|
||||
iod->dma_len = bv->bv_len;
|
||||
|
||||
cmnd->flags = NVME_CMD_SGL_METABUF;
|
||||
cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
|
||||
cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
|
||||
cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
|
||||
return BLK_STS_OK;
|
||||
}
|
||||
|
||||
static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
|
||||
struct nvme_command *cmnd)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
blk_status_t ret = BLK_STS_RESOURCE;
|
||||
int nr_mapped;
|
||||
|
||||
if (blk_rq_nr_phys_segments(req) == 1) {
|
||||
struct bio_vec bv = req_bvec(req);
|
||||
|
||||
if (!is_pci_p2pdma_page(bv.bv_page)) {
|
||||
if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
|
||||
return nvme_setup_prp_simple(dev, req,
|
||||
&cmnd->rw, &bv);
|
||||
|
||||
if (iod->nvmeq->qid && sgl_threshold &&
|
||||
dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
|
||||
return nvme_setup_sgl_simple(dev, req,
|
||||
&cmnd->rw, &bv);
|
||||
}
|
||||
}
|
||||
|
||||
iod->dma_len = 0;
|
||||
iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
|
||||
if (!iod->sg)
|
||||
return BLK_STS_RESOURCE;
|
||||
sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
|
||||
iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
|
||||
if (!iod->nents)
|
||||
goto out_free_sg;
|
||||
|
||||
if (is_pci_p2pdma_page(sg_page(iod->sg)))
|
||||
nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
|
||||
iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
|
||||
else
|
||||
nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
|
||||
rq_dma_dir(req), DMA_ATTR_NO_WARN);
|
||||
if (!nr_mapped)
|
||||
goto out_free_sg;
|
||||
|
||||
iod->use_sgl = nvme_pci_use_sgls(dev, req);
|
||||
if (iod->use_sgl)
|
||||
ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
|
||||
else
|
||||
ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
|
||||
if (ret != BLK_STS_OK)
|
||||
goto out_unmap_sg;
|
||||
return BLK_STS_OK;
|
||||
|
||||
out_unmap_sg:
|
||||
nvme_unmap_sg(dev, req);
|
||||
out_free_sg:
|
||||
mempool_free(iod->sg, dev->iod_mempool);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
|
||||
struct nvme_command *cmnd)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
|
||||
iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
|
||||
rq_dma_dir(req), 0);
|
||||
if (dma_mapping_error(dev->dev, iod->meta_dma))
|
||||
return BLK_STS_IOERR;
|
||||
cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
|
||||
return BLK_STS_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* NOTE: ns is NULL when called on the admin queue.
|
||||
*/
|
||||
static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
|
||||
const struct blk_mq_queue_data *bd)
|
||||
{
|
||||
struct nvme_ns *ns = hctx->queue->queuedata;
|
||||
struct nvme_queue *nvmeq = hctx->driver_data;
|
||||
struct nvme_dev *dev = nvmeq->dev;
|
||||
struct request *req = bd->rq;
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
struct nvme_command *cmnd = &iod->cmd;
|
||||
blk_status_t ret;
|
||||
|
||||
iod->aborted = 0;
|
||||
iod->npages = -1;
|
||||
iod->nents = 0;
|
||||
|
||||
/*
|
||||
* We should not need to do this, but we're still using this to
|
||||
* ensure we can drain requests on a dying queue.
|
||||
*/
|
||||
if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
|
||||
return BLK_STS_IOERR;
|
||||
|
||||
ret = nvme_setup_cmd(ns, req, cmnd);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (blk_rq_nr_phys_segments(req)) {
|
||||
ret = nvme_map_data(dev, req, cmnd);
|
||||
if (ret)
|
||||
goto out_free_cmd;
|
||||
}
|
||||
|
||||
if (blk_integrity_rq(req)) {
|
||||
ret = nvme_map_metadata(dev, req, cmnd);
|
||||
if (ret)
|
||||
goto out_unmap_data;
|
||||
}
|
||||
|
||||
blk_mq_start_request(req);
|
||||
nvme_submit_cmd(nvmeq, cmnd, bd->last);
|
||||
return BLK_STS_OK;
|
||||
out_unmap_data:
|
||||
nvme_unmap_data(dev, req);
|
||||
out_free_cmd:
|
||||
nvme_cleanup_cmd(req);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void nvme_pci_complete_rq(struct request *req)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
struct nvme_dev *dev = iod->nvmeq->dev;
|
||||
|
||||
if (blk_integrity_rq(req))
|
||||
dma_unmap_page(dev->dev, iod->meta_dma,
|
||||
rq_integrity_vec(req)->bv_len, rq_data_dir(req));
|
||||
if (blk_rq_nr_phys_segments(req))
|
||||
nvme_unmap_data(dev, req);
|
||||
nvme_complete_rq(req);
|
||||
}
|
||||
|
||||
/* We read the CQE phase first to check if the rest of the entry is valid */
|
||||
static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
|
||||
{
|
||||
struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
|
||||
|
||||
return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
|
||||
}
|
||||
|
||||
static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
|
||||
{
|
||||
u16 head = nvmeq->cq_head;
|
||||
|
||||
if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
|
||||
nvmeq->dbbuf_cq_ei))
|
||||
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
|
||||
}
|
||||
|
||||
static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
|
||||
{
|
||||
if (!nvmeq->qid)
|
||||
return nvmeq->dev->admin_tagset.tags[0];
|
||||
return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
|
||||
}
|
||||
|
||||
static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
|
||||
{
|
||||
struct nvme_completion *cqe = &nvmeq->cqes[idx];
|
||||
__u16 command_id = READ_ONCE(cqe->command_id);
|
||||
struct request *req;
|
||||
|
||||
/*
|
||||
* AEN requests are special as they don't time out and can
|
||||
* survive any kind of queue freeze and often don't respond to
|
||||
* aborts. We don't even bother to allocate a struct request
|
||||
* for them but rather special case them here.
|
||||
*/
|
||||
if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
|
||||
nvme_complete_async_event(&nvmeq->dev->ctrl,
|
||||
cqe->status, &cqe->result);
|
||||
return;
|
||||
}
|
||||
|
||||
req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
|
||||
if (unlikely(!req)) {
|
||||
dev_warn(nvmeq->dev->ctrl.device,
|
||||
"invalid id %d completed on queue %d\n",
|
||||
command_id, le16_to_cpu(cqe->sq_id));
|
||||
return;
|
||||
}
|
||||
|
||||
trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
|
||||
if (!nvme_try_complete_req(req, cqe->status, cqe->result))
|
||||
nvme_pci_complete_rq(req);
|
||||
}
|
||||
|
||||
static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
|
||||
{
|
||||
u32 tmp = nvmeq->cq_head + 1;
|
||||
|
||||
if (tmp == nvmeq->q_depth) {
|
||||
nvmeq->cq_head = 0;
|
||||
nvmeq->cq_phase ^= 1;
|
||||
} else {
|
||||
nvmeq->cq_head = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static inline int nvme_process_cq(struct nvme_queue *nvmeq)
|
||||
{
|
||||
int found = 0;
|
||||
|
||||
while (nvme_cqe_pending(nvmeq)) {
|
||||
found++;
|
||||
/*
|
||||
* load-load control dependency between phase and the rest of
|
||||
* the cqe requires a full read memory barrier
|
||||
*/
|
||||
dma_rmb();
|
||||
nvme_handle_cqe(nvmeq, nvmeq->cq_head);
|
||||
nvme_update_cq_head(nvmeq);
|
||||
}
|
||||
|
||||
if (found)
|
||||
nvme_ring_cq_doorbell(nvmeq);
|
||||
return found;
|
||||
}
|
||||
|
||||
static irqreturn_t nvme_irq(int irq, void *data)
|
||||
{
|
||||
struct nvme_queue *nvmeq = data;
|
||||
irqreturn_t ret = IRQ_NONE;
|
||||
|
||||
/*
|
||||
* The rmb/wmb pair ensures we see all updates from a previous run of
|
||||
* the irq handler, even if that was on another CPU.
|
||||
*/
|
||||
rmb();
|
||||
if (nvme_process_cq(nvmeq))
|
||||
ret = IRQ_HANDLED;
|
||||
wmb();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static irqreturn_t nvme_irq_check(int irq, void *data)
|
||||
{
|
||||
struct nvme_queue *nvmeq = data;
|
||||
|
||||
if (nvme_cqe_pending(nvmeq))
|
||||
return IRQ_WAKE_THREAD;
|
||||
return IRQ_NONE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Poll for completions for any interrupt driven queue
|
||||
* Can be called from any context.
|
||||
*/
|
||||
static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
|
||||
|
||||
WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
|
||||
|
||||
disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
|
||||
nvme_process_cq(nvmeq);
|
||||
enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
|
||||
}
|
||||
|
||||
static int nvme_poll(struct blk_mq_hw_ctx *hctx)
|
||||
{
|
||||
struct nvme_queue *nvmeq = hctx->driver_data;
|
||||
bool found;
|
||||
|
||||
if (!nvme_cqe_pending(nvmeq))
|
||||
return 0;
|
||||
|
||||
spin_lock(&nvmeq->cq_poll_lock);
|
||||
found = nvme_process_cq(nvmeq);
|
||||
spin_unlock(&nvmeq->cq_poll_lock);
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
||||
struct nvme_queue *nvmeq = &dev->queues[0];
|
||||
struct nvme_command c;
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.common.opcode = nvme_admin_async_event;
|
||||
c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
|
||||
nvme_submit_cmd(nvmeq, &c, true);
|
||||
}
|
||||
|
||||
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
|
||||
{
|
||||
struct nvme_command c;
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.delete_queue.opcode = opcode;
|
||||
c.delete_queue.qid = cpu_to_le16(id);
|
||||
|
||||
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
||||
}
|
||||
|
||||
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
|
||||
struct nvme_queue *nvmeq, s16 vector)
|
||||
{
|
||||
struct nvme_command c;
|
||||
int flags = NVME_QUEUE_PHYS_CONTIG;
|
||||
|
||||
if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
|
||||
flags |= NVME_CQ_IRQ_ENABLED;
|
||||
|
||||
/*
|
||||
* Note: we (ab)use the fact that the prp fields survive if no data
|
||||
* is attached to the request.
|
||||
*/
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.create_cq.opcode = nvme_admin_create_cq;
|
||||
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
|
||||
c.create_cq.cqid = cpu_to_le16(qid);
|
||||
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
||||
c.create_cq.cq_flags = cpu_to_le16(flags);
|
||||
c.create_cq.irq_vector = cpu_to_le16(vector);
|
||||
|
||||
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
||||
}
|
||||
|
||||
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
|
||||
struct nvme_queue *nvmeq)
|
||||
{
|
||||
struct nvme_ctrl *ctrl = &dev->ctrl;
|
||||
struct nvme_command c;
|
||||
int flags = NVME_QUEUE_PHYS_CONTIG;
|
||||
|
||||
/*
|
||||
* Some drives have a bug that auto-enables WRRU if MEDIUM isn't
|
||||
* set. Since URGENT priority is zeroes, it makes all queues
|
||||
* URGENT.
|
||||
*/
|
||||
if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
|
||||
flags |= NVME_SQ_PRIO_MEDIUM;
|
||||
|
||||
/*
|
||||
* Note: we (ab)use the fact that the prp fields survive if no data
|
||||
* is attached to the request.
|
||||
*/
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.create_sq.opcode = nvme_admin_create_sq;
|
||||
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
|
||||
c.create_sq.sqid = cpu_to_le16(qid);
|
||||
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
||||
c.create_sq.sq_flags = cpu_to_le16(flags);
|
||||
c.create_sq.cqid = cpu_to_le16(qid);
|
||||
|
||||
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
||||
}
|
||||
|
||||
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
|
||||
{
|
||||
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
|
||||
}
|
||||
|
||||
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
|
||||
{
|
||||
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
|
||||
}
|
||||
|
||||
static void abort_endio(struct request *req, blk_status_t error)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
struct nvme_queue *nvmeq = iod->nvmeq;
|
||||
|
||||
dev_warn(nvmeq->dev->ctrl.device,
|
||||
"Abort status: 0x%x", nvme_req(req)->status);
|
||||
atomic_inc(&nvmeq->dev->ctrl.abort_limit);
|
||||
blk_mq_free_request(req);
|
||||
}
|
||||
|
||||
static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
|
||||
{
|
||||
/* If true, indicates loss of adapter communication, possibly by a
|
||||
* NVMe Subsystem reset.
|
||||
*/
|
||||
bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
|
||||
|
||||
/* If there is a reset/reinit ongoing, we shouldn't reset again. */
|
||||
switch (dev->ctrl.state) {
|
||||
case NVME_CTRL_RESETTING:
|
||||
case NVME_CTRL_CONNECTING:
|
||||
return false;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
/* We shouldn't reset unless the controller is on fatal error state
|
||||
* _or_ if we lost the communication with it.
|
||||
*/
|
||||
if (!(csts & NVME_CSTS_CFS) && !nssro)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
|
||||
{
|
||||
/* Read a config register to help see what died. */
|
||||
u16 pci_status;
|
||||
int result;
|
||||
|
||||
result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
|
||||
&pci_status);
|
||||
if (result == PCIBIOS_SUCCESSFUL)
|
||||
dev_warn(dev->ctrl.device,
|
||||
"controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
|
||||
csts, pci_status);
|
||||
else
|
||||
dev_warn(dev->ctrl.device,
|
||||
"controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
|
||||
csts, result);
|
||||
}
|
||||
|
||||
static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
|
||||
{
|
||||
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
||||
struct nvme_queue *nvmeq = iod->nvmeq;
|
||||
struct nvme_dev *dev = nvmeq->dev;
|
||||
struct request *abort_req;
|
||||
struct nvme_command cmd;
|
||||
u32 csts = readl(dev->bar + NVME_REG_CSTS);
|
||||
|
||||
/* If PCI error recovery process is happening, we cannot reset or
|
||||
* the recovery mechanism will surely fail.
|
||||
*/
|
||||
mb();
|
||||
if (pci_channel_offline(to_pci_dev(dev->dev)))
|
||||
return BLK_EH_RESET_TIMER;
|
||||
|
||||
/*
|
||||
* Reset immediately if the controller is failed
|
||||
*/
|
||||
if (nvme_should_reset(dev, csts)) {
|
||||
nvme_warn_reset(dev, csts);
|
||||
nvme_dev_disable(dev, false);
|
||||
nvme_reset_ctrl(&dev->ctrl);
|
||||
return BLK_EH_DONE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Did we miss an interrupt?
|
||||
*/
|
||||
if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
|
||||
nvme_poll(req->mq_hctx);
|
||||
else
|
||||
nvme_poll_irqdisable(nvmeq);
|
||||
|
||||
if (blk_mq_request_completed(req)) {
|
||||
dev_warn(dev->ctrl.device,
|
||||
"I/O %d QID %d timeout, completion polled\n",
|
||||
req->tag, nvmeq->qid);
|
||||
return BLK_EH_DONE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Shutdown immediately if controller times out while starting. The
|
||||
* reset work will see the pci device disabled when it gets the forced
|
||||
* cancellation error. All outstanding requests are completed on
|
||||
* shutdown, so we return BLK_EH_DONE.
|
||||
*/
|
||||
switch (dev->ctrl.state) {
|
||||
case NVME_CTRL_CONNECTING:
|
||||
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
|
||||
fallthrough;
|
||||
case NVME_CTRL_DELETING:
|
||||
dev_warn_ratelimited(dev->ctrl.device,
|
||||
"I/O %d QID %d timeout, disable controller\n",
|
||||
req->tag, nvmeq->qid);
|
||||
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
|
||||
nvme_dev_disable(dev, true);
|
||||
return BLK_EH_DONE;
|
||||
case NVME_CTRL_RESETTING:
|
||||
return BLK_EH_RESET_TIMER;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Shutdown the controller immediately and schedule a reset if the
|
||||
* command was already aborted once before and still hasn't been
|
||||
* returned to the driver, or if this is the admin queue.
|
||||
*/
|
||||
if (!nvmeq->qid || iod->aborted) {
|
||||
dev_warn(dev->ctrl.device,
|
||||
"I/O %d QID %d timeout, reset controller\n",
|
||||
req->tag, nvmeq->qid);
|
||||
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
|
||||
nvme_dev_disable(dev, false);
|
||||
nvme_reset_ctrl(&dev->ctrl);
|
||||
|
||||
return BLK_EH_DONE;
|
||||
}
|
||||
|
||||
if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
|
||||
atomic_inc(&dev->ctrl.abort_limit);
|
||||
return BLK_EH_RESET_TIMER;
|
||||
}
|
||||
iod->aborted = 1;
|
||||
|
||||
memset(&cmd, 0, sizeof(cmd));
|
||||
cmd.abort.opcode = nvme_admin_abort_cmd;
|
||||
cmd.abort.cid = nvme_cid(req);
|
||||
cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
|
||||
|
||||
dev_warn(nvmeq->dev->ctrl.device,
|
||||
"I/O %d QID %d timeout, aborting\n",
|
||||
req->tag, nvmeq->qid);
|
||||
|
||||
abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
|
||||
BLK_MQ_REQ_NOWAIT);
|
||||
if (IS_ERR(abort_req)) {
|
||||
atomic_inc(&dev->ctrl.abort_limit);
|
||||
return BLK_EH_RESET_TIMER;
|
||||
}
|
||||
|
||||
abort_req->end_io_data = NULL;
|
||||
blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
|
||||
|
||||
/*
|
||||
* The aborted req will be completed on receiving the abort req.
|
||||
* We enable the timer again. If hit twice, it'll cause a device reset,
|
||||
* as the device then is in a faulty state.
|
||||
*/
|
||||
return BLK_EH_RESET_TIMER;
|
||||
}
|
||||
|
||||
static void nvme_free_queue(struct nvme_queue *nvmeq)
|
||||
{
|
||||
dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
|
||||
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
|
||||
if (!nvmeq->sq_cmds)
|
||||
return;
|
||||
|
||||
if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
|
||||
pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
|
||||
nvmeq->sq_cmds, SQ_SIZE(nvmeq));
|
||||
} else {
|
||||
dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
|
||||
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
|
||||
}
|
||||
}
|
||||
|
||||
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
|
||||
dev->ctrl.queue_count--;
|
||||
nvme_free_queue(&dev->queues[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* nvme_suspend_queue - put queue into suspended state
|
||||
* @nvmeq: queue to suspend
|
||||
*/
|
||||
static int nvme_suspend_queue(struct nvme_queue *nvmeq)
|
||||
{
|
||||
if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
|
||||
return 1;
|
||||
|
||||
/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
|
||||
mb();
|
||||
|
||||
nvmeq->dev->online_queues--;
|
||||
if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
|
||||
blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
|
||||
if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
|
||||
pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void nvme_suspend_io_queues(struct nvme_dev *dev)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = dev->ctrl.queue_count - 1; i > 0; i--)
|
||||
nvme_suspend_queue(&dev->queues[i]);
|
||||
}
|
||||
|
||||
static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
|
||||
{
|
||||
struct nvme_queue *nvmeq = &dev->queues[0];
|
||||
|
||||
if (shutdown)
|
||||
nvme_shutdown_ctrl(&dev->ctrl);
|
||||
else
|
||||
nvme_disable_ctrl(&dev->ctrl);
|
||||
|
||||
nvme_poll_irqdisable(nvmeq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called only on a device that has been disabled and after all other threads
|
||||
* that can check this device's completion queues have synced, except
|
||||
* nvme_poll(). This is the last chance for the driver to see a natural
|
||||
* completion before nvme_cancel_request() terminates all incomplete requests.
|
||||
*/
|
||||
static void nvme_reap_pending_cqes(struct nvme_dev *dev)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
|
||||
spin_lock(&dev->queues[i].cq_poll_lock);
|
||||
nvme_process_cq(&dev->queues[i]);
|
||||
spin_unlock(&dev->queues[i].cq_poll_lock);
|
||||
}
|
||||
}
|
||||
|
||||
static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
|
||||
int entry_size)
|
||||
{
|
||||
int q_depth = dev->q_depth;
|
||||
unsigned q_size_aligned = roundup(q_depth * entry_size,
|
||||
NVME_CTRL_PAGE_SIZE);
|
||||
|
||||
if (q_size_aligned * nr_io_queues > dev->cmb_size) {
|
||||
u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
|
||||
|
||||
mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
|
||||
q_depth = div_u64(mem_per_q, entry_size);
|
||||
|
||||
/*
|
||||
* Ensure the reduced q_depth is above some threshold where it
|
||||
* would be better to map queues in system memory with the
|
||||
* original depth
|
||||
*/
|
||||
if (q_depth < 64)
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
return q_depth;
|
||||
}
|
||||
|
||||
static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
|
||||
int qid)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
|
||||
if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
|
||||
nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
|
||||
if (nvmeq->sq_cmds) {
|
||||
nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
|
||||
nvmeq->sq_cmds);
|
||||
if (nvmeq->sq_dma_addr) {
|
||||
set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
|
||||
}
|
||||
}
|
||||
|
||||
nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
|
||||
&nvmeq->sq_dma_addr, GFP_KERNEL);
|
||||
if (!nvmeq->sq_cmds)
|
||||
return -ENOMEM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
|
||||
{
|
||||
struct nvme_queue *nvmeq = &dev->queues[qid];
|
||||
|
||||
if (dev->ctrl.queue_count > qid)
|
||||
return 0;
|
||||
|
||||
nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
|
||||
nvmeq->q_depth = depth;
|
||||
nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
|
||||
&nvmeq->cq_dma_addr, GFP_KERNEL);
|
||||
if (!nvmeq->cqes)
|
||||
goto free_nvmeq;
|
||||
|
||||
if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
|
||||
goto free_cqdma;
|
||||
|
||||
nvmeq->dev = dev;
|
||||
spin_lock_init(&nvmeq->sq_lock);
|
||||
spin_lock_init(&nvmeq->cq_poll_lock);
|
||||
nvmeq->cq_head = 0;
|
||||
nvmeq->cq_phase = 1;
|
||||
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
||||
nvmeq->qid = qid;
|
||||
dev->ctrl.queue_count++;
|
||||
|
||||
return 0;
|
||||
|
||||
free_cqdma:
|
||||
dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
|
||||
nvmeq->cq_dma_addr);
|
||||
free_nvmeq:
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
static int queue_request_irq(struct nvme_queue *nvmeq)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
|
||||
int nr = nvmeq->dev->ctrl.instance;
|
||||
|
||||
if (use_threaded_interrupts) {
|
||||
return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
|
||||
nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
|
||||
} else {
|
||||
return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
|
||||
NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
|
||||
}
|
||||
}
|
||||
|
||||
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
|
||||
{
|
||||
struct nvme_dev *dev = nvmeq->dev;
|
||||
|
||||
nvmeq->sq_tail = 0;
|
||||
nvmeq->last_sq_tail = 0;
|
||||
nvmeq->cq_head = 0;
|
||||
nvmeq->cq_phase = 1;
|
||||
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
||||
memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
|
||||
nvme_dbbuf_init(dev, nvmeq, qid);
|
||||
dev->online_queues++;
|
||||
wmb(); /* ensure the first interrupt sees the initialization */
|
||||
}
|
||||
|
||||
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
|
||||
{
|
||||
struct nvme_dev *dev = nvmeq->dev;
|
||||
int result;
|
||||
u16 vector = 0;
|
||||
|
||||
clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
|
||||
|
||||
/*
|
||||
* A queue's vector matches the queue identifier unless the controller
|
||||
* has only one vector available.
|
||||
*/
|
||||
if (!polled)
|
||||
vector = dev->num_vecs == 1 ? 0 : qid;
|
||||
else
|
||||
set_bit(NVMEQ_POLLED, &nvmeq->flags);
|
||||
|
||||
result = adapter_alloc_cq(dev, qid, nvmeq, vector);
|
||||
if (result)
|
||||
return result;
|
||||
|
||||
result = adapter_alloc_sq(dev, qid, nvmeq);
|
||||
if (result < 0)
|
||||
return result;
|
||||
if (result)
|
||||
goto release_cq;
|
||||
|
||||
nvmeq->cq_vector = vector;
|
||||
nvme_init_queue(nvmeq, qid);
|
||||
|
||||
if (!polled) {
|
||||
result = queue_request_irq(nvmeq);
|
||||
if (result < 0)
|
||||
goto release_sq;
|
||||
}
|
||||
|
||||
set_bit(NVMEQ_ENABLED, &nvmeq->flags);
|
||||
return result;
|
||||
|
||||
release_sq:
|
||||
dev->online_queues--;
|
||||
adapter_delete_sq(dev, qid);
|
||||
release_cq:
|
||||
adapter_delete_cq(dev, qid);
|
||||
return result;
|
||||
}
|
||||
|
||||
static const struct blk_mq_ops nvme_mq_admin_ops = {
|
||||
.queue_rq = nvme_queue_rq,
|
||||
.complete = nvme_pci_complete_rq,
|
||||
.init_hctx = nvme_admin_init_hctx,
|
||||
.init_request = nvme_init_request,
|
||||
.timeout = nvme_timeout,
|
||||
};
|
||||
|
||||
static const struct blk_mq_ops nvme_mq_ops = {
|
||||
.queue_rq = nvme_queue_rq,
|
||||
.complete = nvme_pci_complete_rq,
|
||||
.commit_rqs = nvme_commit_rqs,
|
||||
.init_hctx = nvme_init_hctx,
|
||||
.init_request = nvme_init_request,
|
||||
.map_queues = nvme_pci_map_queues,
|
||||
.timeout = nvme_timeout,
|
||||
.poll = nvme_poll,
|
||||
};
|
||||
|
||||
static void nvme_dev_remove_admin(struct nvme_dev *dev)
|
||||
{
|
||||
if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
|
||||
/*
|
||||
* If the controller was reset during removal, it's possible
|
||||
* user requests may be waiting on a stopped queue. Start the
|
||||
* queue to flush these to completion.
|
||||
*/
|
||||
blk_mq_unquiesce_queue(dev->ctrl.admin_q);
|
||||
blk_cleanup_queue(dev->ctrl.admin_q);
|
||||
blk_mq_free_tag_set(&dev->admin_tagset);
|
||||
}
|
||||
}
|
||||
|
||||
static int nvme_alloc_admin_tags(struct nvme_dev *dev)
|
||||
{
|
||||
if (!dev->ctrl.admin_q) {
|
||||
dev->admin_tagset.ops = &nvme_mq_admin_ops;
|
||||
dev->admin_tagset.nr_hw_queues = 1;
|
||||
|
||||
dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
|
||||
dev->admin_tagset.timeout = ADMIN_TIMEOUT;
|
||||
dev->admin_tagset.numa_node = dev->ctrl.numa_node;
|
||||
dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
|
||||
dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
|
||||
dev->admin_tagset.driver_data = dev;
|
||||
|
||||
if (blk_mq_alloc_tag_set(&dev->admin_tagset))
|
||||
return -ENOMEM;
|
||||
dev->ctrl.admin_tagset = &dev->admin_tagset;
|
||||
|
||||
dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
|
||||
if (IS_ERR(dev->ctrl.admin_q)) {
|
||||
blk_mq_free_tag_set(&dev->admin_tagset);
|
||||
dev->ctrl.admin_q = NULL;
|
||||
return -ENOMEM;
|
||||
}
|
||||
if (!blk_get_queue(dev->ctrl.admin_q)) {
|
||||
nvme_dev_remove_admin(dev);
|
||||
dev->ctrl.admin_q = NULL;
|
||||
return -ENODEV;
|
||||
}
|
||||
} else
|
||||
blk_mq_unquiesce_queue(dev->ctrl.admin_q);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
|
||||
{
|
||||
return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
|
||||
}
|
||||
|
||||
static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
|
||||
if (size <= dev->bar_mapped_size)
|
||||
return 0;
|
||||
if (size > pci_resource_len(pdev, 0))
|
||||
return -ENOMEM;
|
||||
if (dev->bar)
|
||||
iounmap(dev->bar);
|
||||
dev->bar = ioremap(pci_resource_start(pdev, 0), size);
|
||||
if (!dev->bar) {
|
||||
dev->bar_mapped_size = 0;
|
||||
return -ENOMEM;
|
||||
}
|
||||
dev->bar_mapped_size = size;
|
||||
dev->dbs = dev->bar + NVME_REG_DBS;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
|
||||
{
|
||||
int result;
|
||||
u32 aqa;
|
||||
struct nvme_queue *nvmeq;
|
||||
|
||||
result = nvme_remap_bar(dev, db_bar_size(dev, 0));
|
||||
if (result < 0)
|
||||
return result;
|
||||
|
||||
dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
|
||||
NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
|
||||
|
||||
if (dev->subsystem &&
|
||||
(readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
|
||||
writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
|
||||
|
||||
result = nvme_disable_ctrl(&dev->ctrl);
|
||||
if (result < 0)
|
||||
return result;
|
||||
|
||||
result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
|
||||
if (result)
|
||||
return result;
|
||||
|
||||
dev->ctrl.numa_node = dev_to_node(dev->dev);
|
||||
|
||||
nvmeq = &dev->queues[0];
|
||||
aqa = nvmeq->q_depth - 1;
|
||||
aqa |= aqa << 16;
|
||||
|
||||
writel(aqa, dev->bar + NVME_REG_AQA);
|
||||
lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
|
||||
lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
|
||||
|
||||
result = nvme_enable_ctrl(&dev->ctrl);
|
||||
if (result)
|
||||
return result;
|
||||
|
||||
nvmeq->cq_vector = 0;
|
||||
nvme_init_queue(nvmeq, 0);
|
||||
result = queue_request_irq(nvmeq);
|
||||
if (result) {
|
||||
dev->online_queues--;
|
||||
return result;
|
||||
}
|
||||
|
||||
set_bit(NVMEQ_ENABLED, &nvmeq->flags);
|
||||
return result;
|
||||
}
|
||||
|
||||
static int nvme_create_io_queues(struct nvme_dev *dev)
|
||||
{
|
||||
unsigned i, max, rw_queues;
|
||||
int ret = 0;
|
||||
|
||||
for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
|
||||
if (nvme_alloc_queue(dev, i, dev->q_depth)) {
|
||||
ret = -ENOMEM;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
max = min(dev->max_qid, dev->ctrl.queue_count - 1);
|
||||
if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
|
||||
rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
|
||||
dev->io_queues[HCTX_TYPE_READ];
|
||||
} else {
|
||||
rw_queues = max;
|
||||
}
|
||||
|
||||
for (i = dev->online_queues; i <= max; i++) {
|
||||
bool polled = i > rw_queues;
|
||||
|
||||
ret = nvme_create_queue(&dev->queues[i], i, polled);
|
||||
if (ret)
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Ignore failing Create SQ/CQ commands, we can continue with less
|
||||
* than the desired amount of queues, and even a controller without
|
||||
* I/O queues can still be used to issue admin commands. This might
|
||||
* be useful to upgrade a buggy firmware for example.
|
||||
*/
|
||||
return ret >= 0 ? 0 : ret;
|
||||
}
|
||||
|
||||
static ssize_t nvme_cmb_show(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
|
||||
|
||||
return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
|
||||
ndev->cmbloc, ndev->cmbsz);
|
||||
}
|
||||
static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
|
||||
|
||||
static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
|
||||
{
|
||||
u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
|
||||
|
||||
return 1ULL << (12 + 4 * szu);
|
||||
}
|
||||
|
||||
static u32 nvme_cmb_size(struct nvme_dev *dev)
|
||||
{
|
||||
return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
|
||||
}
|
||||
|
||||
static void nvme_map_cmb(struct nvme_dev *dev)
|
||||
{
|
||||
u64 size, offset;
|
||||
resource_size_t bar_size;
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
int bar;
|
||||
|
||||
if (dev->cmb_size)
|
||||
return;
|
||||
|
||||
if (NVME_CAP_CMBS(dev->ctrl.cap))
|
||||
writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
|
||||
|
||||
dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
|
||||
if (!dev->cmbsz)
|
||||
return;
|
||||
dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
|
||||
|
||||
size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
|
||||
offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
|
||||
bar = NVME_CMB_BIR(dev->cmbloc);
|
||||
bar_size = pci_resource_len(pdev, bar);
|
||||
|
||||
if (offset > bar_size)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Tell the controller about the host side address mapping the CMB,
|
||||
* and enable CMB decoding for the NVMe 1.4+ scheme:
|
||||
*/
|
||||
if (NVME_CAP_CMBS(dev->ctrl.cap)) {
|
||||
hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
|
||||
(pci_bus_address(pdev, bar) + offset),
|
||||
dev->bar + NVME_REG_CMBMSC);
|
||||
}
|
||||
|
||||
/*
|
||||
* Controllers may support a CMB size larger than their BAR,
|
||||
* for example, due to being behind a bridge. Reduce the CMB to
|
||||
* the reported size of the BAR
|
||||
*/
|
||||
if (size > bar_size - offset)
|
||||
size = bar_size - offset;
|
||||
|
||||
if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
|
||||
dev_warn(dev->ctrl.device,
|
||||
"failed to register the CMB\n");
|
||||
return;
|
||||
}
|
||||
|
||||
dev->cmb_size = size;
|
||||
dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
|
||||
|
||||
if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
|
||||
(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
|
||||
pci_p2pmem_publish(pdev, true);
|
||||
|
||||
if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
|
||||
&dev_attr_cmb.attr, NULL))
|
||||
dev_warn(dev->ctrl.device,
|
||||
"failed to add sysfs attribute for CMB\n");
|
||||
}
|
||||
|
||||
static inline void nvme_release_cmb(struct nvme_dev *dev)
|
||||
{
|
||||
if (dev->cmb_size) {
|
||||
sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
|
||||
&dev_attr_cmb.attr, NULL);
|
||||
dev->cmb_size = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
|
||||
{
|
||||
u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
|
||||
u64 dma_addr = dev->host_mem_descs_dma;
|
||||
struct nvme_command c;
|
||||
int ret;
|
||||
|
||||
memset(&c, 0, sizeof(c));
|
||||
c.features.opcode = nvme_admin_set_features;
|
||||
c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
|
||||
c.features.dword11 = cpu_to_le32(bits);
|
||||
c.features.dword12 = cpu_to_le32(host_mem_size);
|
||||
c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
|
||||
c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
|
||||
c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
|
||||
|
||||
ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
||||
if (ret) {
|
||||
dev_warn(dev->ctrl.device,
|
||||
"failed to set host mem (err %d, flags %#x).\n",
|
||||
ret, bits);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void nvme_free_host_mem(struct nvme_dev *dev)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < dev->nr_host_mem_descs; i++) {
|
||||
struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
|
||||
size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
|
||||
|
||||
dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
|
||||
le64_to_cpu(desc->addr),
|
||||
DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
|
||||
}
|
||||
|
||||
kfree(dev->host_mem_desc_bufs);
|
||||
dev->host_mem_desc_bufs = NULL;
|
||||
dma_free_coherent(dev->dev,
|
||||
dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
|
||||
dev->host_mem_descs, dev->host_mem_descs_dma);
|
||||
dev->host_mem_descs = NULL;
|
||||
dev->nr_host_mem_descs = 0;
|
||||
}
|
||||
|
||||
static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
|
||||
u32 chunk_size)
|
||||
{
|
||||
struct nvme_host_mem_buf_desc *descs;
|
||||
u32 max_entries, len;
|
||||
dma_addr_t descs_dma;
|
||||
int i = 0;
|
||||
void **bufs;
|
||||
u64 size, tmp;
|
||||
|
||||
tmp = (preferred + chunk_size - 1);
|
||||
do_div(tmp, chunk_size);
|
||||
max_entries = tmp;
|
||||
|
||||
if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
|
||||
max_entries = dev->ctrl.hmmaxd;
|
||||
|
||||
descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
|
||||
&descs_dma, GFP_KERNEL);
|
||||
if (!descs)
|
||||
goto out;
|
||||
|
||||
bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
|
||||
if (!bufs)
|
||||
goto out_free_descs;
|
||||
|
||||
for (size = 0; size < preferred && i < max_entries; size += len) {
|
||||
dma_addr_t dma_addr;
|
||||
|
||||
len = min_t(u64, chunk_size, preferred - size);
|
||||
bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
|
||||
DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
|
||||
if (!bufs[i])
|
||||
break;
|
||||
|
||||
descs[i].addr = cpu_to_le64(dma_addr);
|
||||
descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
|
||||
i++;
|
||||
}
|
||||
|
||||
if (!size)
|
||||
goto out_free_bufs;
|
||||
|
||||
dev->nr_host_mem_descs = i;
|
||||
dev->host_mem_size = size;
|
||||
dev->host_mem_descs = descs;
|
||||
dev->host_mem_descs_dma = descs_dma;
|
||||
dev->host_mem_desc_bufs = bufs;
|
||||
return 0;
|
||||
|
||||
out_free_bufs:
|
||||
while (--i >= 0) {
|
||||
size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
|
||||
|
||||
dma_free_attrs(dev->dev, size, bufs[i],
|
||||
le64_to_cpu(descs[i].addr),
|
||||
DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
|
||||
}
|
||||
|
||||
kfree(bufs);
|
||||
out_free_descs:
|
||||
dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
|
||||
descs_dma);
|
||||
out:
|
||||
dev->host_mem_descs = NULL;
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
|
||||
{
|
||||
u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
|
||||
u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
|
||||
u64 chunk_size;
|
||||
|
||||
/* start big and work our way down */
|
||||
for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
|
||||
if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
|
||||
if (!min || dev->host_mem_size >= min)
|
||||
return 0;
|
||||
nvme_free_host_mem(dev);
|
||||
}
|
||||
}
|
||||
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
static int nvme_setup_host_mem(struct nvme_dev *dev)
|
||||
{
|
||||
u64 max = (u64)max_host_mem_size_mb * SZ_1M;
|
||||
u64 preferred = (u64)dev->ctrl.hmpre * 4096;
|
||||
u64 min = (u64)dev->ctrl.hmmin * 4096;
|
||||
u32 enable_bits = NVME_HOST_MEM_ENABLE;
|
||||
int ret;
|
||||
|
||||
preferred = min(preferred, max);
|
||||
if (min > max) {
|
||||
dev_warn(dev->ctrl.device,
|
||||
"min host memory (%lld MiB) above limit (%d MiB).\n",
|
||||
min >> ilog2(SZ_1M), max_host_mem_size_mb);
|
||||
nvme_free_host_mem(dev);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we already have a buffer allocated check if we can reuse it.
|
||||
*/
|
||||
if (dev->host_mem_descs) {
|
||||
if (dev->host_mem_size >= min)
|
||||
enable_bits |= NVME_HOST_MEM_RETURN;
|
||||
else
|
||||
nvme_free_host_mem(dev);
|
||||
}
|
||||
|
||||
if (!dev->host_mem_descs) {
|
||||
if (nvme_alloc_host_mem(dev, min, preferred)) {
|
||||
dev_warn(dev->ctrl.device,
|
||||
"failed to allocate host memory buffer.\n");
|
||||
return 0; /* controller must work without HMB */
|
||||
}
|
||||
|
||||
dev_info(dev->ctrl.device,
|
||||
"allocated %lld MiB host memory buffer.\n",
|
||||
dev->host_mem_size >> ilog2(SZ_1M));
|
||||
}
|
||||
|
||||
ret = nvme_set_host_mem(dev, enable_bits);
|
||||
if (ret)
|
||||
nvme_free_host_mem(dev);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* nirqs is the number of interrupts available for write and read
|
||||
* queues. The core already reserved an interrupt for the admin queue.
|
||||
*/
|
||||
static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
|
||||
{
|
||||
struct nvme_dev *dev = affd->priv;
|
||||
unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
|
||||
|
||||
/*
|
||||
* If there is no interrupt available for queues, ensure that
|
||||
* the default queue is set to 1. The affinity set size is
|
||||
* also set to one, but the irq core ignores it for this case.
|
||||
*
|
||||
* If only one interrupt is available or 'write_queue' == 0, combine
|
||||
* write and read queues.
|
||||
*
|
||||
* If 'write_queues' > 0, ensure it leaves room for at least one read
|
||||
* queue.
|
||||
*/
|
||||
if (!nrirqs) {
|
||||
nrirqs = 1;
|
||||
nr_read_queues = 0;
|
||||
} else if (nrirqs == 1 || !nr_write_queues) {
|
||||
nr_read_queues = 0;
|
||||
} else if (nr_write_queues >= nrirqs) {
|
||||
nr_read_queues = 1;
|
||||
} else {
|
||||
nr_read_queues = nrirqs - nr_write_queues;
|
||||
}
|
||||
|
||||
dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
|
||||
affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
|
||||
dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
|
||||
affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
|
||||
affd->nr_sets = nr_read_queues ? 2 : 1;
|
||||
}
|
||||
|
||||
static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
struct irq_affinity affd = {
|
||||
.pre_vectors = 1,
|
||||
.calc_sets = nvme_calc_irq_sets,
|
||||
.priv = dev,
|
||||
};
|
||||
unsigned int irq_queues, poll_queues;
|
||||
|
||||
/*
|
||||
* Poll queues don't need interrupts, but we need at least one I/O queue
|
||||
* left over for non-polled I/O.
|
||||
*/
|
||||
poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
|
||||
dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
|
||||
|
||||
/*
|
||||
* Initialize for the single interrupt case, will be updated in
|
||||
* nvme_calc_irq_sets().
|
||||
*/
|
||||
dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
|
||||
dev->io_queues[HCTX_TYPE_READ] = 0;
|
||||
|
||||
/*
|
||||
* We need interrupts for the admin queue and each non-polled I/O queue,
|
||||
* but some Apple controllers require all queues to use the first
|
||||
* vector.
|
||||
*/
|
||||
irq_queues = 1;
|
||||
if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
|
||||
irq_queues += (nr_io_queues - poll_queues);
|
||||
return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
|
||||
PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
|
||||
}
|
||||
|
||||
static void nvme_disable_io_queues(struct nvme_dev *dev)
|
||||
{
|
||||
if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
|
||||
__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
|
||||
}
|
||||
|
||||
static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
|
||||
{
|
||||
return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
|
||||
}
|
||||
|
||||
static int nvme_setup_io_queues(struct nvme_dev *dev)
|
||||
{
|
||||
struct nvme_queue *adminq = &dev->queues[0];
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
unsigned int nr_io_queues;
|
||||
unsigned long size;
|
||||
int result;
|
||||
|
||||
/*
|
||||
* Sample the module parameters once at reset time so that we have
|
||||
* stable values to work with.
|
||||
*/
|
||||
dev->nr_write_queues = write_queues;
|
||||
dev->nr_poll_queues = poll_queues;
|
||||
|
||||
/*
|
||||
* If tags are shared with admin queue (Apple bug), then
|
||||
* make sure we only use one IO queue.
|
||||
*/
|
||||
if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
|
||||
nr_io_queues = 1;
|
||||
else
|
||||
nr_io_queues = min(nvme_max_io_queues(dev),
|
||||
dev->nr_allocated_queues - 1);
|
||||
|
||||
result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
|
||||
if (result < 0)
|
||||
return result;
|
||||
|
||||
if (nr_io_queues == 0)
|
||||
return 0;
|
||||
|
||||
clear_bit(NVMEQ_ENABLED, &adminq->flags);
|
||||
|
||||
if (dev->cmb_use_sqes) {
|
||||
result = nvme_cmb_qdepth(dev, nr_io_queues,
|
||||
sizeof(struct nvme_command));
|
||||
if (result > 0)
|
||||
dev->q_depth = result;
|
||||
else
|
||||
dev->cmb_use_sqes = false;
|
||||
}
|
||||
|
||||
do {
|
||||
size = db_bar_size(dev, nr_io_queues);
|
||||
result = nvme_remap_bar(dev, size);
|
||||
if (!result)
|
||||
break;
|
||||
if (!--nr_io_queues)
|
||||
return -ENOMEM;
|
||||
} while (1);
|
||||
adminq->q_db = dev->dbs;
|
||||
|
||||
retry:
|
||||
/* Deregister the admin queue's interrupt */
|
||||
pci_free_irq(pdev, 0, adminq);
|
||||
|
||||
/*
|
||||
* If we enable msix early due to not intx, disable it again before
|
||||
* setting up the full range we need.
|
||||
*/
|
||||
pci_free_irq_vectors(pdev);
|
||||
|
||||
result = nvme_setup_irqs(dev, nr_io_queues);
|
||||
if (result <= 0)
|
||||
return -EIO;
|
||||
|
||||
dev->num_vecs = result;
|
||||
result = max(result - 1, 1);
|
||||
dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
|
||||
|
||||
/*
|
||||
* Should investigate if there's a performance win from allocating
|
||||
* more queues than interrupt vectors; it might allow the submission
|
||||
* path to scale better, even if the receive path is limited by the
|
||||
* number of interrupts.
|
||||
*/
|
||||
result = queue_request_irq(adminq);
|
||||
if (result)
|
||||
return result;
|
||||
set_bit(NVMEQ_ENABLED, &adminq->flags);
|
||||
|
||||
result = nvme_create_io_queues(dev);
|
||||
if (result || dev->online_queues < 2)
|
||||
return result;
|
||||
|
||||
if (dev->online_queues - 1 < dev->max_qid) {
|
||||
nr_io_queues = dev->online_queues - 1;
|
||||
nvme_disable_io_queues(dev);
|
||||
nvme_suspend_io_queues(dev);
|
||||
goto retry;
|
||||
}
|
||||
dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
|
||||
dev->io_queues[HCTX_TYPE_DEFAULT],
|
||||
dev->io_queues[HCTX_TYPE_READ],
|
||||
dev->io_queues[HCTX_TYPE_POLL]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void nvme_del_queue_end(struct request *req, blk_status_t error)
|
||||
{
|
||||
struct nvme_queue *nvmeq = req->end_io_data;
|
||||
|
||||
blk_mq_free_request(req);
|
||||
complete(&nvmeq->delete_done);
|
||||
}
|
||||
|
||||
static void nvme_del_cq_end(struct request *req, blk_status_t error)
|
||||
{
|
||||
struct nvme_queue *nvmeq = req->end_io_data;
|
||||
|
||||
if (error)
|
||||
set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
|
||||
|
||||
nvme_del_queue_end(req, error);
|
||||
}
|
||||
|
||||
static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
|
||||
{
|
||||
struct request_queue *q = nvmeq->dev->ctrl.admin_q;
|
||||
struct request *req;
|
||||
struct nvme_command cmd;
|
||||
|
||||
memset(&cmd, 0, sizeof(cmd));
|
||||
cmd.delete_queue.opcode = opcode;
|
||||
cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
|
||||
|
||||
req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
|
||||
if (IS_ERR(req))
|
||||
return PTR_ERR(req);
|
||||
|
||||
req->end_io_data = nvmeq;
|
||||
|
||||
init_completion(&nvmeq->delete_done);
|
||||
blk_execute_rq_nowait(q, NULL, req, false,
|
||||
opcode == nvme_admin_delete_cq ?
|
||||
nvme_del_cq_end : nvme_del_queue_end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
|
||||
{
|
||||
int nr_queues = dev->online_queues - 1, sent = 0;
|
||||
unsigned long timeout;
|
||||
|
||||
retry:
|
||||
timeout = ADMIN_TIMEOUT;
|
||||
while (nr_queues > 0) {
|
||||
if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
|
||||
break;
|
||||
nr_queues--;
|
||||
sent++;
|
||||
}
|
||||
while (sent) {
|
||||
struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
|
||||
|
||||
timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
|
||||
timeout);
|
||||
if (timeout == 0)
|
||||
return false;
|
||||
|
||||
sent--;
|
||||
if (nr_queues)
|
||||
goto retry;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void nvme_dev_add(struct nvme_dev *dev)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!dev->ctrl.tagset) {
|
||||
dev->tagset.ops = &nvme_mq_ops;
|
||||
dev->tagset.nr_hw_queues = dev->online_queues - 1;
|
||||
dev->tagset.nr_maps = 2; /* default + read */
|
||||
if (dev->io_queues[HCTX_TYPE_POLL])
|
||||
dev->tagset.nr_maps++;
|
||||
dev->tagset.timeout = NVME_IO_TIMEOUT;
|
||||
dev->tagset.numa_node = dev->ctrl.numa_node;
|
||||
dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
|
||||
BLK_MQ_MAX_DEPTH) - 1;
|
||||
dev->tagset.cmd_size = sizeof(struct nvme_iod);
|
||||
dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
|
||||
dev->tagset.driver_data = dev;
|
||||
|
||||
/*
|
||||
* Some Apple controllers requires tags to be unique
|
||||
* across admin and IO queue, so reserve the first 32
|
||||
* tags of the IO queue.
|
||||
*/
|
||||
if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
|
||||
dev->tagset.reserved_tags = NVME_AQ_DEPTH;
|
||||
|
||||
ret = blk_mq_alloc_tag_set(&dev->tagset);
|
||||
if (ret) {
|
||||
dev_warn(dev->ctrl.device,
|
||||
"IO queues tagset allocation failed %d\n", ret);
|
||||
return;
|
||||
}
|
||||
dev->ctrl.tagset = &dev->tagset;
|
||||
} else {
|
||||
blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
|
||||
|
||||
/* Free previously allocated queues that are no longer usable */
|
||||
nvme_free_queues(dev, dev->online_queues);
|
||||
}
|
||||
|
||||
nvme_dbbuf_set(dev);
|
||||
}
|
||||
|
||||
static int nvme_pci_enable(struct nvme_dev *dev)
|
||||
{
|
||||
int result = -ENOMEM;
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
|
||||
if (pci_enable_device_mem(pdev))
|
||||
return result;
|
||||
|
||||
pci_set_master(pdev);
|
||||
|
||||
if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
|
||||
goto disable;
|
||||
|
||||
if (readl(dev->bar + NVME_REG_CSTS) == -1) {
|
||||
result = -ENODEV;
|
||||
goto disable;
|
||||
}
|
||||
|
||||
/*
|
||||
* Some devices and/or platforms don't advertise or work with INTx
|
||||
* interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
|
||||
* adjust this later.
|
||||
*/
|
||||
result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
|
||||
if (result < 0)
|
||||
return result;
|
||||
|
||||
dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
|
||||
|
||||
dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
|
||||
io_queue_depth);
|
||||
dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
|
||||
dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
|
||||
dev->dbs = dev->bar + 4096;
|
||||
|
||||
/*
|
||||
* Some Apple controllers require a non-standard SQE size.
|
||||
* Interestingly they also seem to ignore the CC:IOSQES register
|
||||
* so we don't bother updating it here.
|
||||
*/
|
||||
if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
|
||||
dev->io_sqes = 7;
|
||||
else
|
||||
dev->io_sqes = NVME_NVM_IOSQES;
|
||||
|
||||
/*
|
||||
* Temporary fix for the Apple controller found in the MacBook8,1 and
|
||||
* some MacBook7,1 to avoid controller resets and data loss.
|
||||
*/
|
||||
if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
|
||||
dev->q_depth = 2;
|
||||
dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
|
||||
"set queue depth=%u to work around controller resets\n",
|
||||
dev->q_depth);
|
||||
} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
|
||||
(pdev->device == 0xa821 || pdev->device == 0xa822) &&
|
||||
NVME_CAP_MQES(dev->ctrl.cap) == 0) {
|
||||
dev->q_depth = 64;
|
||||
dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
|
||||
"set queue depth=%u\n", dev->q_depth);
|
||||
}
|
||||
|
||||
/*
|
||||
* Controllers with the shared tags quirk need the IO queue to be
|
||||
* big enough so that we get 32 tags for the admin queue
|
||||
*/
|
||||
if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
|
||||
(dev->q_depth < (NVME_AQ_DEPTH + 2))) {
|
||||
dev->q_depth = NVME_AQ_DEPTH + 2;
|
||||
dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
|
||||
dev->q_depth);
|
||||
}
|
||||
|
||||
|
||||
nvme_map_cmb(dev);
|
||||
|
||||
pci_enable_pcie_error_reporting(pdev);
|
||||
pci_save_state(pdev);
|
||||
return 0;
|
||||
|
||||
disable:
|
||||
pci_disable_device(pdev);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void nvme_dev_unmap(struct nvme_dev *dev)
|
||||
{
|
||||
if (dev->bar)
|
||||
iounmap(dev->bar);
|
||||
pci_release_mem_regions(to_pci_dev(dev->dev));
|
||||
}
|
||||
|
||||
static void nvme_pci_disable(struct nvme_dev *dev)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
|
||||
pci_free_irq_vectors(pdev);
|
||||
|
||||
if (pci_is_enabled(pdev)) {
|
||||
pci_disable_pcie_error_reporting(pdev);
|
||||
pci_disable_device(pdev);
|
||||
}
|
||||
}
|
||||
|
||||
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
|
||||
{
|
||||
bool dead = true, freeze = false;
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
|
||||
mutex_lock(&dev->shutdown_lock);
|
||||
if (pci_is_enabled(pdev)) {
|
||||
u32 csts = readl(dev->bar + NVME_REG_CSTS);
|
||||
|
||||
if (dev->ctrl.state == NVME_CTRL_LIVE ||
|
||||
dev->ctrl.state == NVME_CTRL_RESETTING) {
|
||||
freeze = true;
|
||||
nvme_start_freeze(&dev->ctrl);
|
||||
}
|
||||
dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
|
||||
pdev->error_state != pci_channel_io_normal);
|
||||
}
|
||||
|
||||
/*
|
||||
* Give the controller a chance to complete all entered requests if
|
||||
* doing a safe shutdown.
|
||||
*/
|
||||
if (!dead && shutdown && freeze)
|
||||
nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
|
||||
|
||||
nvme_stop_queues(&dev->ctrl);
|
||||
|
||||
if (!dead && dev->ctrl.queue_count > 0) {
|
||||
nvme_disable_io_queues(dev);
|
||||
nvme_disable_admin_queue(dev, shutdown);
|
||||
}
|
||||
nvme_suspend_io_queues(dev);
|
||||
nvme_suspend_queue(&dev->queues[0]);
|
||||
nvme_pci_disable(dev);
|
||||
nvme_reap_pending_cqes(dev);
|
||||
|
||||
blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
|
||||
blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
|
||||
blk_mq_tagset_wait_completed_request(&dev->tagset);
|
||||
blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
|
||||
|
||||
/*
|
||||
* The driver will not be starting up queues again if shutting down so
|
||||
* must flush all entered requests to their failed completion to avoid
|
||||
* deadlocking blk-mq hot-cpu notifier.
|
||||
*/
|
||||
if (shutdown) {
|
||||
nvme_start_queues(&dev->ctrl);
|
||||
if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
|
||||
blk_mq_unquiesce_queue(dev->ctrl.admin_q);
|
||||
}
|
||||
mutex_unlock(&dev->shutdown_lock);
|
||||
}
|
||||
|
||||
static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
|
||||
{
|
||||
if (!nvme_wait_reset(&dev->ctrl))
|
||||
return -EBUSY;
|
||||
nvme_dev_disable(dev, shutdown);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_setup_prp_pools(struct nvme_dev *dev)
|
||||
{
|
||||
dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
|
||||
NVME_CTRL_PAGE_SIZE,
|
||||
NVME_CTRL_PAGE_SIZE, 0);
|
||||
if (!dev->prp_page_pool)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Optimisation for I/Os between 4k and 128k */
|
||||
dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
|
||||
256, 256, 0);
|
||||
if (!dev->prp_small_pool) {
|
||||
dma_pool_destroy(dev->prp_page_pool);
|
||||
return -ENOMEM;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void nvme_release_prp_pools(struct nvme_dev *dev)
|
||||
{
|
||||
dma_pool_destroy(dev->prp_page_pool);
|
||||
dma_pool_destroy(dev->prp_small_pool);
|
||||
}
|
||||
|
||||
static void nvme_free_tagset(struct nvme_dev *dev)
|
||||
{
|
||||
if (dev->tagset.tags)
|
||||
blk_mq_free_tag_set(&dev->tagset);
|
||||
dev->ctrl.tagset = NULL;
|
||||
}
|
||||
|
||||
static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
|
||||
{
|
||||
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
||||
|
||||
nvme_dbbuf_dma_free(dev);
|
||||
nvme_free_tagset(dev);
|
||||
if (dev->ctrl.admin_q)
|
||||
blk_put_queue(dev->ctrl.admin_q);
|
||||
free_opal_dev(dev->ctrl.opal_dev);
|
||||
mempool_destroy(dev->iod_mempool);
|
||||
put_device(dev->dev);
|
||||
kfree(dev->queues);
|
||||
kfree(dev);
|
||||
}
|
||||
|
||||
static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
|
||||
{
|
||||
/*
|
||||
* Set state to deleting now to avoid blocking nvme_wait_reset(), which
|
||||
* may be holding this pci_dev's device lock.
|
||||
*/
|
||||
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
|
||||
nvme_get_ctrl(&dev->ctrl);
|
||||
nvme_dev_disable(dev, false);
|
||||
nvme_kill_queues(&dev->ctrl);
|
||||
if (!queue_work(nvme_wq, &dev->remove_work))
|
||||
nvme_put_ctrl(&dev->ctrl);
|
||||
}
|
||||
|
||||
static void nvme_reset_work(struct work_struct *work)
|
||||
{
|
||||
struct nvme_dev *dev =
|
||||
container_of(work, struct nvme_dev, ctrl.reset_work);
|
||||
bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
|
||||
int result;
|
||||
|
||||
if (dev->ctrl.state != NVME_CTRL_RESETTING) {
|
||||
dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
|
||||
dev->ctrl.state);
|
||||
result = -ENODEV;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we're called to reset a live controller first shut it down before
|
||||
* moving on.
|
||||
*/
|
||||
if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
|
||||
nvme_dev_disable(dev, false);
|
||||
nvme_sync_queues(&dev->ctrl);
|
||||
|
||||
mutex_lock(&dev->shutdown_lock);
|
||||
result = nvme_pci_enable(dev);
|
||||
if (result)
|
||||
goto out_unlock;
|
||||
|
||||
result = nvme_pci_configure_admin_queue(dev);
|
||||
if (result)
|
||||
goto out_unlock;
|
||||
|
||||
result = nvme_alloc_admin_tags(dev);
|
||||
if (result)
|
||||
goto out_unlock;
|
||||
|
||||
/*
|
||||
* Limit the max command size to prevent iod->sg allocations going
|
||||
* over a single page.
|
||||
*/
|
||||
dev->ctrl.max_hw_sectors = min_t(u32,
|
||||
NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
|
||||
dev->ctrl.max_segments = NVME_MAX_SEGS;
|
||||
|
||||
/*
|
||||
* Don't limit the IOMMU merged segment size.
|
||||
*/
|
||||
dma_set_max_seg_size(dev->dev, 0xffffffff);
|
||||
dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
|
||||
|
||||
mutex_unlock(&dev->shutdown_lock);
|
||||
|
||||
/*
|
||||
* Introduce CONNECTING state from nvme-fc/rdma transports to mark the
|
||||
* initializing procedure here.
|
||||
*/
|
||||
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
|
||||
dev_warn(dev->ctrl.device,
|
||||
"failed to mark controller CONNECTING\n");
|
||||
result = -EBUSY;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* We do not support an SGL for metadata (yet), so we are limited to a
|
||||
* single integrity segment for the separate metadata pointer.
|
||||
*/
|
||||
dev->ctrl.max_integrity_segments = 1;
|
||||
|
||||
result = nvme_init_identify(&dev->ctrl);
|
||||
if (result)
|
||||
goto out;
|
||||
|
||||
if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
|
||||
if (!dev->ctrl.opal_dev)
|
||||
dev->ctrl.opal_dev =
|
||||
init_opal_dev(&dev->ctrl, &nvme_sec_submit);
|
||||
else if (was_suspend)
|
||||
opal_unlock_from_suspend(dev->ctrl.opal_dev);
|
||||
} else {
|
||||
free_opal_dev(dev->ctrl.opal_dev);
|
||||
dev->ctrl.opal_dev = NULL;
|
||||
}
|
||||
|
||||
if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
|
||||
result = nvme_dbbuf_dma_alloc(dev);
|
||||
if (result)
|
||||
dev_warn(dev->dev,
|
||||
"unable to allocate dma for dbbuf\n");
|
||||
}
|
||||
|
||||
if (dev->ctrl.hmpre) {
|
||||
result = nvme_setup_host_mem(dev);
|
||||
if (result < 0)
|
||||
goto out;
|
||||
}
|
||||
|
||||
result = nvme_setup_io_queues(dev);
|
||||
if (result)
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* Keep the controller around but remove all namespaces if we don't have
|
||||
* any working I/O queue.
|
||||
*/
|
||||
if (dev->online_queues < 2) {
|
||||
dev_warn(dev->ctrl.device, "IO queues not created\n");
|
||||
nvme_kill_queues(&dev->ctrl);
|
||||
nvme_remove_namespaces(&dev->ctrl);
|
||||
nvme_free_tagset(dev);
|
||||
} else {
|
||||
nvme_start_queues(&dev->ctrl);
|
||||
nvme_wait_freeze(&dev->ctrl);
|
||||
nvme_dev_add(dev);
|
||||
nvme_unfreeze(&dev->ctrl);
|
||||
}
|
||||
|
||||
/*
|
||||
* If only admin queue live, keep it to do further investigation or
|
||||
* recovery.
|
||||
*/
|
||||
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
|
||||
dev_warn(dev->ctrl.device,
|
||||
"failed to mark controller live state\n");
|
||||
result = -ENODEV;
|
||||
goto out;
|
||||
}
|
||||
|
||||
nvme_start_ctrl(&dev->ctrl);
|
||||
return;
|
||||
|
||||
out_unlock:
|
||||
mutex_unlock(&dev->shutdown_lock);
|
||||
out:
|
||||
if (result)
|
||||
dev_warn(dev->ctrl.device,
|
||||
"Removing after probe failure status: %d\n", result);
|
||||
nvme_remove_dead_ctrl(dev);
|
||||
}
|
||||
|
||||
static void nvme_remove_dead_ctrl_work(struct work_struct *work)
|
||||
{
|
||||
struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
|
||||
if (pci_get_drvdata(pdev))
|
||||
device_release_driver(&pdev->dev);
|
||||
nvme_put_ctrl(&dev->ctrl);
|
||||
}
|
||||
|
||||
static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
|
||||
{
|
||||
*val = readl(to_nvme_dev(ctrl)->bar + off);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
|
||||
{
|
||||
writel(val, to_nvme_dev(ctrl)->bar + off);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
|
||||
{
|
||||
*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
|
||||
|
||||
return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
|
||||
}
|
||||
|
||||
static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
|
||||
.name = "pcie",
|
||||
.module = THIS_MODULE,
|
||||
.flags = NVME_F_METADATA_SUPPORTED |
|
||||
NVME_F_PCI_P2PDMA,
|
||||
.reg_read32 = nvme_pci_reg_read32,
|
||||
.reg_write32 = nvme_pci_reg_write32,
|
||||
.reg_read64 = nvme_pci_reg_read64,
|
||||
.free_ctrl = nvme_pci_free_ctrl,
|
||||
.submit_async_event = nvme_pci_submit_async_event,
|
||||
.get_address = nvme_pci_get_address,
|
||||
};
|
||||
|
||||
static int nvme_dev_map(struct nvme_dev *dev)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
||||
|
||||
if (pci_request_mem_regions(pdev, "nvme"))
|
||||
return -ENODEV;
|
||||
|
||||
if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
|
||||
goto release;
|
||||
|
||||
return 0;
|
||||
release:
|
||||
pci_release_mem_regions(pdev);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
|
||||
{
|
||||
if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
|
||||
/*
|
||||
* Several Samsung devices seem to drop off the PCIe bus
|
||||
* randomly when APST is on and uses the deepest sleep state.
|
||||
* This has been observed on a Samsung "SM951 NVMe SAMSUNG
|
||||
* 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
|
||||
* 950 PRO 256GB", but it seems to be restricted to two Dell
|
||||
* laptops.
|
||||
*/
|
||||
if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
|
||||
(dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
|
||||
dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
|
||||
return NVME_QUIRK_NO_DEEPEST_PS;
|
||||
} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
|
||||
/*
|
||||
* Samsung SSD 960 EVO drops off the PCIe bus after system
|
||||
* suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
|
||||
* within few minutes after bootup on a Coffee Lake board -
|
||||
* ASUS PRIME Z370-A
|
||||
*/
|
||||
if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
|
||||
(dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
|
||||
dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
|
||||
return NVME_QUIRK_NO_APST;
|
||||
} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
|
||||
pdev->device == 0xa808 || pdev->device == 0xa809)) ||
|
||||
(pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
|
||||
/*
|
||||
* Forcing to use host managed nvme power settings for
|
||||
* lowest idle power with quick resume latency on
|
||||
* Samsung and Toshiba SSDs based on suspend behavior
|
||||
* on Coffee Lake board for LENOVO C640
|
||||
*/
|
||||
if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
|
||||
dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
|
||||
return NVME_QUIRK_SIMPLE_SUSPEND;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_ACPI
|
||||
static bool nvme_acpi_storage_d3(struct pci_dev *dev)
|
||||
{
|
||||
struct acpi_device *adev = ACPI_COMPANION(&dev->dev);
|
||||
u8 val;
|
||||
|
||||
/*
|
||||
* Look for _DSD property specifying that the storage device on the port
|
||||
* must use D3 to support deep platform power savings during
|
||||
* suspend-to-idle.
|
||||
*/
|
||||
|
||||
if (!adev)
|
||||
return false;
|
||||
if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
|
||||
&val))
|
||||
return false;
|
||||
return val == 1;
|
||||
}
|
||||
#else
|
||||
static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
#endif /* CONFIG_ACPI */
|
||||
|
||||
static void nvme_async_probe(void *data, async_cookie_t cookie)
|
||||
{
|
||||
struct nvme_dev *dev = data;
|
||||
|
||||
flush_work(&dev->ctrl.reset_work);
|
||||
flush_work(&dev->ctrl.scan_work);
|
||||
nvme_put_ctrl(&dev->ctrl);
|
||||
}
|
||||
|
||||
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
||||
{
|
||||
int node, result = -ENOMEM;
|
||||
struct nvme_dev *dev;
|
||||
unsigned long quirks = id->driver_data;
|
||||
size_t alloc_size;
|
||||
|
||||
node = dev_to_node(&pdev->dev);
|
||||
if (node == NUMA_NO_NODE)
|
||||
set_dev_node(&pdev->dev, first_memory_node);
|
||||
|
||||
dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
|
||||
if (!dev)
|
||||
return -ENOMEM;
|
||||
|
||||
dev->nr_write_queues = write_queues;
|
||||
dev->nr_poll_queues = poll_queues;
|
||||
dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
|
||||
dev->queues = kcalloc_node(dev->nr_allocated_queues,
|
||||
sizeof(struct nvme_queue), GFP_KERNEL, node);
|
||||
if (!dev->queues)
|
||||
goto free;
|
||||
|
||||
dev->dev = get_device(&pdev->dev);
|
||||
pci_set_drvdata(pdev, dev);
|
||||
|
||||
result = nvme_dev_map(dev);
|
||||
if (result)
|
||||
goto put_pci;
|
||||
|
||||
INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
|
||||
INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
|
||||
mutex_init(&dev->shutdown_lock);
|
||||
|
||||
result = nvme_setup_prp_pools(dev);
|
||||
if (result)
|
||||
goto unmap;
|
||||
|
||||
quirks |= check_vendor_combination_bug(pdev);
|
||||
|
||||
if (!noacpi && nvme_acpi_storage_d3(pdev)) {
|
||||
/*
|
||||
* Some systems use a bios work around to ask for D3 on
|
||||
* platforms that support kernel managed suspend.
|
||||
*/
|
||||
dev_info(&pdev->dev,
|
||||
"platform quirk: setting simple suspend\n");
|
||||
quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
|
||||
}
|
||||
|
||||
/*
|
||||
* Double check that our mempool alloc size will cover the biggest
|
||||
* command we support.
|
||||
*/
|
||||
alloc_size = nvme_pci_iod_alloc_size();
|
||||
WARN_ON_ONCE(alloc_size > PAGE_SIZE);
|
||||
|
||||
dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
|
||||
mempool_kfree,
|
||||
(void *) alloc_size,
|
||||
GFP_KERNEL, node);
|
||||
if (!dev->iod_mempool) {
|
||||
result = -ENOMEM;
|
||||
goto release_pools;
|
||||
}
|
||||
|
||||
result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
|
||||
quirks);
|
||||
if (result)
|
||||
goto release_mempool;
|
||||
|
||||
dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
|
||||
|
||||
nvme_reset_ctrl(&dev->ctrl);
|
||||
async_schedule(nvme_async_probe, dev);
|
||||
|
||||
return 0;
|
||||
|
||||
release_mempool:
|
||||
mempool_destroy(dev->iod_mempool);
|
||||
release_pools:
|
||||
nvme_release_prp_pools(dev);
|
||||
unmap:
|
||||
nvme_dev_unmap(dev);
|
||||
put_pci:
|
||||
put_device(dev->dev);
|
||||
free:
|
||||
kfree(dev->queues);
|
||||
kfree(dev);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void nvme_reset_prepare(struct pci_dev *pdev)
|
||||
{
|
||||
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||||
|
||||
/*
|
||||
* We don't need to check the return value from waiting for the reset
|
||||
* state as pci_dev device lock is held, making it impossible to race
|
||||
* with ->remove().
|
||||
*/
|
||||
nvme_disable_prepare_reset(dev, false);
|
||||
nvme_sync_queues(&dev->ctrl);
|
||||
}
|
||||
|
||||
static void nvme_reset_done(struct pci_dev *pdev)
|
||||
{
|
||||
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||||
|
||||
if (!nvme_try_sched_reset(&dev->ctrl))
|
||||
flush_work(&dev->ctrl.reset_work);
|
||||
}
|
||||
|
||||
static void nvme_shutdown(struct pci_dev *pdev)
|
||||
{
|
||||
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||||
|
||||
nvme_disable_prepare_reset(dev, true);
|
||||
}
|
||||
|
||||
/*
|
||||
* The driver's remove may be called on a device in a partially initialized
|
||||
* state. This function must not have any dependencies on the device state in
|
||||
* order to proceed.
|
||||
*/
|
||||
static void nvme_remove(struct pci_dev *pdev)
|
||||
{
|
||||
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||||
|
||||
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
|
||||
pci_set_drvdata(pdev, NULL);
|
||||
|
||||
if (!pci_device_is_present(pdev)) {
|
||||
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
|
||||
nvme_dev_disable(dev, true);
|
||||
}
|
||||
|
||||
flush_work(&dev->ctrl.reset_work);
|
||||
nvme_stop_ctrl(&dev->ctrl);
|
||||
nvme_remove_namespaces(&dev->ctrl);
|
||||
nvme_dev_disable(dev, true);
|
||||
nvme_release_cmb(dev);
|
||||
nvme_free_host_mem(dev);
|
||||
nvme_dev_remove_admin(dev);
|
||||
nvme_free_queues(dev, 0);
|
||||
nvme_release_prp_pools(dev);
|
||||
nvme_dev_unmap(dev);
|
||||
nvme_uninit_ctrl(&dev->ctrl);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PM_SLEEP
|
||||
static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
|
||||
{
|
||||
return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
|
||||
}
|
||||
|
||||
static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
|
||||
{
|
||||
return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
|
||||
}
|
||||
|
||||
static int nvme_resume(struct device *dev)
|
||||
{
|
||||
struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
|
||||
struct nvme_ctrl *ctrl = &ndev->ctrl;
|
||||
|
||||
if (ndev->last_ps == U32_MAX ||
|
||||
nvme_set_power_state(ctrl, ndev->last_ps) != 0)
|
||||
return nvme_try_sched_reset(&ndev->ctrl);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nvme_suspend(struct device *dev)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(dev);
|
||||
struct nvme_dev *ndev = pci_get_drvdata(pdev);
|
||||
struct nvme_ctrl *ctrl = &ndev->ctrl;
|
||||
int ret = -EBUSY;
|
||||
|
||||
ndev->last_ps = U32_MAX;
|
||||
|
||||
/*
|
||||
* The platform does not remove power for a kernel managed suspend so
|
||||
* use host managed nvme power settings for lowest idle power if
|
||||
* possible. This should have quicker resume latency than a full device
|
||||
* shutdown. But if the firmware is involved after the suspend or the
|
||||
* device does not support any non-default power states, shut down the
|
||||
* device fully.
|
||||
*
|
||||
* If ASPM is not enabled for the device, shut down the device and allow
|
||||
* the PCI bus layer to put it into D3 in order to take the PCIe link
|
||||
* down, so as to allow the platform to achieve its minimum low-power
|
||||
* state (which may not be possible if the link is up).
|
||||
*
|
||||
* If a host memory buffer is enabled, shut down the device as the NVMe
|
||||
* specification allows the device to access the host memory buffer in
|
||||
* host DRAM from all power states, but hosts will fail access to DRAM
|
||||
* during S3.
|
||||
*/
|
||||
if (pm_suspend_via_firmware() || !ctrl->npss ||
|
||||
!pcie_aspm_enabled(pdev) ||
|
||||
ndev->nr_host_mem_descs ||
|
||||
(ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
|
||||
return nvme_disable_prepare_reset(ndev, true);
|
||||
|
||||
nvme_start_freeze(ctrl);
|
||||
nvme_wait_freeze(ctrl);
|
||||
nvme_sync_queues(ctrl);
|
||||
|
||||
if (ctrl->state != NVME_CTRL_LIVE)
|
||||
goto unfreeze;
|
||||
|
||||
ret = nvme_get_power_state(ctrl, &ndev->last_ps);
|
||||
if (ret < 0)
|
||||
goto unfreeze;
|
||||
|
||||
/*
|
||||
* A saved state prevents pci pm from generically controlling the
|
||||
* device's power. If we're using protocol specific settings, we don't
|
||||
* want pci interfering.
|
||||
*/
|
||||
pci_save_state(pdev);
|
||||
|
||||
ret = nvme_set_power_state(ctrl, ctrl->npss);
|
||||
if (ret < 0)
|
||||
goto unfreeze;
|
||||
|
||||
if (ret) {
|
||||
/* discard the saved state */
|
||||
pci_load_saved_state(pdev, NULL);
|
||||
|
||||
/*
|
||||
* Clearing npss forces a controller reset on resume. The
|
||||
* correct value will be rediscovered then.
|
||||
*/
|
||||
ret = nvme_disable_prepare_reset(ndev, true);
|
||||
ctrl->npss = 0;
|
||||
}
|
||||
unfreeze:
|
||||
nvme_unfreeze(ctrl);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int nvme_simple_suspend(struct device *dev)
|
||||
{
|
||||
struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
|
||||
|
||||
return nvme_disable_prepare_reset(ndev, true);
|
||||
}
|
||||
|
||||
static int nvme_simple_resume(struct device *dev)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(dev);
|
||||
struct nvme_dev *ndev = pci_get_drvdata(pdev);
|
||||
|
||||
return nvme_try_sched_reset(&ndev->ctrl);
|
||||
}
|
||||
|
||||
static const struct dev_pm_ops nvme_dev_pm_ops = {
|
||||
.suspend = nvme_suspend,
|
||||
.resume = nvme_resume,
|
||||
.freeze = nvme_simple_suspend,
|
||||
.thaw = nvme_simple_resume,
|
||||
.poweroff = nvme_simple_suspend,
|
||||
.restore = nvme_simple_resume,
|
||||
};
|
||||
#endif /* CONFIG_PM_SLEEP */
|
||||
|
||||
static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
|
||||
pci_channel_state_t state)
|
||||
{
|
||||
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||||
|
||||
/*
|
||||
* A frozen channel requires a reset. When detected, this method will
|
||||
* shutdown the controller to quiesce. The controller will be restarted
|
||||
* after the slot reset through driver's slot_reset callback.
|
||||
*/
|
||||
switch (state) {
|
||||
case pci_channel_io_normal:
|
||||
return PCI_ERS_RESULT_CAN_RECOVER;
|
||||
case pci_channel_io_frozen:
|
||||
dev_warn(dev->ctrl.device,
|
||||
"frozen state error detected, reset controller\n");
|
||||
nvme_dev_disable(dev, false);
|
||||
return PCI_ERS_RESULT_NEED_RESET;
|
||||
case pci_channel_io_perm_failure:
|
||||
dev_warn(dev->ctrl.device,
|
||||
"failure state error detected, request disconnect\n");
|
||||
return PCI_ERS_RESULT_DISCONNECT;
|
||||
}
|
||||
return PCI_ERS_RESULT_NEED_RESET;
|
||||
}
|
||||
|
||||
static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
|
||||
{
|
||||
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||||
|
||||
dev_info(dev->ctrl.device, "restart after slot reset\n");
|
||||
pci_restore_state(pdev);
|
||||
nvme_reset_ctrl(&dev->ctrl);
|
||||
return PCI_ERS_RESULT_RECOVERED;
|
||||
}
|
||||
|
||||
static void nvme_error_resume(struct pci_dev *pdev)
|
||||
{
|
||||
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
||||
|
||||
flush_work(&dev->ctrl.reset_work);
|
||||
}
|
||||
|
||||
static const struct pci_error_handlers nvme_err_handler = {
|
||||
.error_detected = nvme_error_detected,
|
||||
.slot_reset = nvme_slot_reset,
|
||||
.resume = nvme_error_resume,
|
||||
.reset_prepare = nvme_reset_prepare,
|
||||
.reset_done = nvme_reset_done,
|
||||
};
|
||||
|
||||
static const struct pci_device_id nvme_id_table[] = {
|
||||
{ PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
|
||||
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
||||
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
||||
{ PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
|
||||
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
||||
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
||||
{ PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
|
||||
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
||||
NVME_QUIRK_DEALLOCATE_ZEROES |
|
||||
NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||||
{ PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
|
||||
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
||||
NVME_QUIRK_DEALLOCATE_ZEROES, },
|
||||
{ PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
|
||||
.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
|
||||
NVME_QUIRK_MEDIUM_PRIO_SQ |
|
||||
NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
|
||||
NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||||
{ PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
|
||||
.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||||
{ PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
|
||||
.driver_data = NVME_QUIRK_IDENTIFY_CNS |
|
||||
NVME_QUIRK_DISABLE_WRITE_ZEROES |
|
||||
NVME_QUIRK_BOGUS_NID, },
|
||||
{ PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
|
||||
.driver_data = NVME_QUIRK_BOGUS_NID, },
|
||||
{ PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
|
||||
.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
|
||||
{ PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
|
||||
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
|
||||
NVME_QUIRK_NO_NS_DESC_LIST, },
|
||||
{ PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
|
||||
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
||||
{ PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
|
||||
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
||||
{ PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
|
||||
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
||||
{ PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
|
||||
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
|
||||
{ PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
|
||||
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
|
||||
NVME_QUIRK_DISABLE_WRITE_ZEROES|
|
||||
NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||||
{ PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
|
||||
.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
|
||||
NVME_QUIRK_BOGUS_NID, },
|
||||
{ PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
|
||||
.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
|
||||
NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||||
{ PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
|
||||
.driver_data = NVME_QUIRK_LIGHTNVM, },
|
||||
{ PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
|
||||
.driver_data = NVME_QUIRK_LIGHTNVM, },
|
||||
{ PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
|
||||
.driver_data = NVME_QUIRK_LIGHTNVM, },
|
||||
{ PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
|
||||
.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
|
||||
NVME_QUIRK_BOGUS_NID, },
|
||||
{ PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
|
||||
.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
|
||||
NVME_QUIRK_IGNORE_DEV_SUBNQN, },
|
||||
{ PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
|
||||
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||||
{ PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
|
||||
.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
|
||||
{ PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
|
||||
.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
|
||||
{ PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
|
||||
.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
|
||||
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
|
||||
.driver_data = NVME_QUIRK_SINGLE_VECTOR },
|
||||
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
|
||||
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
|
||||
.driver_data = NVME_QUIRK_SINGLE_VECTOR |
|
||||
NVME_QUIRK_128_BYTES_SQES |
|
||||
NVME_QUIRK_SHARED_TAGS |
|
||||
NVME_QUIRK_SKIP_CID_GEN },
|
||||
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
|
||||
{ 0, }
|
||||
};
|
||||
MODULE_DEVICE_TABLE(pci, nvme_id_table);
|
||||
|
||||
static struct pci_driver nvme_driver = {
|
||||
.name = "nvme",
|
||||
.id_table = nvme_id_table,
|
||||
.probe = nvme_probe,
|
||||
.remove = nvme_remove,
|
||||
.shutdown = nvme_shutdown,
|
||||
#ifdef CONFIG_PM_SLEEP
|
||||
.driver = {
|
||||
.pm = &nvme_dev_pm_ops,
|
||||
},
|
||||
#endif
|
||||
.sriov_configure = pci_sriov_configure_simple,
|
||||
.err_handler = &nvme_err_handler,
|
||||
};
|
||||
|
||||
static int __init nvme_init(void)
|
||||
{
|
||||
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
|
||||
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
|
||||
BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
|
||||
|
||||
return pci_register_driver(&nvme_driver);
|
||||
}
|
||||
|
||||
static void __exit nvme_exit(void)
|
||||
{
|
||||
pci_unregister_driver(&nvme_driver);
|
||||
flush_workqueue(nvme_wq);
|
||||
}
|
||||
|
||||
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_VERSION("1.0");
|
||||
module_init(nvme_init);
|
||||
module_exit(nvme_exit);
|
175
feed/kmod-nvme/src/trace.h
Normal file
175
feed/kmod-nvme/src/trace.h
Normal file
|
@ -0,0 +1,175 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
/*
|
||||
* NVM Express device driver tracepoints
|
||||
* Copyright (c) 2018 Johannes Thumshirn, SUSE Linux GmbH
|
||||
*/
|
||||
|
||||
#undef TRACE_SYSTEM
|
||||
#define TRACE_SYSTEM nvme
|
||||
|
||||
#if !defined(_TRACE_NVME_H) || defined(TRACE_HEADER_MULTI_READ)
|
||||
#define _TRACE_NVME_H
|
||||
|
||||
#include <linux/nvme.h>
|
||||
#include <linux/tracepoint.h>
|
||||
#include <linux/trace_seq.h>
|
||||
|
||||
#include "nvme.h"
|
||||
|
||||
const char *nvme_trace_parse_admin_cmd(struct trace_seq *p, u8 opcode,
|
||||
u8 *cdw10);
|
||||
const char *nvme_trace_parse_nvm_cmd(struct trace_seq *p, u8 opcode,
|
||||
u8 *cdw10);
|
||||
const char *nvme_trace_parse_fabrics_cmd(struct trace_seq *p, u8 fctype,
|
||||
u8 *spc);
|
||||
|
||||
#define parse_nvme_cmd(qid, opcode, fctype, cdw10) \
|
||||
((opcode) == nvme_fabrics_command ? \
|
||||
nvme_trace_parse_fabrics_cmd(p, fctype, cdw10) : \
|
||||
((qid) ? \
|
||||
nvme_trace_parse_nvm_cmd(p, opcode, cdw10) : \
|
||||
nvme_trace_parse_admin_cmd(p, opcode, cdw10)))
|
||||
|
||||
const char *nvme_trace_disk_name(struct trace_seq *p, char *name);
|
||||
#define __print_disk_name(name) \
|
||||
nvme_trace_disk_name(p, name)
|
||||
|
||||
#ifndef TRACE_HEADER_MULTI_READ
|
||||
static inline void __assign_disk_name(char *name, struct gendisk *disk)
|
||||
{
|
||||
if (disk)
|
||||
memcpy(name, disk->disk_name, DISK_NAME_LEN);
|
||||
else
|
||||
memset(name, 0, DISK_NAME_LEN);
|
||||
}
|
||||
#endif
|
||||
|
||||
TRACE_EVENT(nvme_setup_cmd,
|
||||
TP_PROTO(struct request *req, struct nvme_command *cmd),
|
||||
TP_ARGS(req, cmd),
|
||||
TP_STRUCT__entry(
|
||||
__array(char, disk, DISK_NAME_LEN)
|
||||
__field(int, ctrl_id)
|
||||
__field(int, qid)
|
||||
__field(u8, opcode)
|
||||
__field(u8, flags)
|
||||
__field(u8, fctype)
|
||||
__field(u16, cid)
|
||||
__field(u32, nsid)
|
||||
__field(bool, metadata)
|
||||
__array(u8, cdw10, 24)
|
||||
),
|
||||
TP_fast_assign(
|
||||
__entry->ctrl_id = nvme_req(req)->ctrl->instance;
|
||||
__entry->qid = nvme_req_qid(req);
|
||||
__entry->opcode = cmd->common.opcode;
|
||||
__entry->flags = cmd->common.flags;
|
||||
__entry->cid = cmd->common.command_id;
|
||||
__entry->nsid = le32_to_cpu(cmd->common.nsid);
|
||||
__entry->metadata = !!blk_integrity_rq(req);
|
||||
__entry->fctype = cmd->fabrics.fctype;
|
||||
__assign_disk_name(__entry->disk, req->rq_disk);
|
||||
memcpy(__entry->cdw10, &cmd->common.cdw10,
|
||||
sizeof(__entry->cdw10));
|
||||
),
|
||||
TP_printk("nvme%d: %sqid=%d, cmdid=%u, nsid=%u, flags=0x%x, meta=0x%x, cmd=(%s %s)",
|
||||
__entry->ctrl_id, __print_disk_name(__entry->disk),
|
||||
__entry->qid, __entry->cid, __entry->nsid,
|
||||
__entry->flags, __entry->metadata,
|
||||
show_opcode_name(__entry->qid, __entry->opcode,
|
||||
__entry->fctype),
|
||||
parse_nvme_cmd(__entry->qid, __entry->opcode,
|
||||
__entry->fctype, __entry->cdw10))
|
||||
);
|
||||
|
||||
TRACE_EVENT(nvme_complete_rq,
|
||||
TP_PROTO(struct request *req),
|
||||
TP_ARGS(req),
|
||||
TP_STRUCT__entry(
|
||||
__array(char, disk, DISK_NAME_LEN)
|
||||
__field(int, ctrl_id)
|
||||
__field(int, qid)
|
||||
__field(int, cid)
|
||||
__field(u64, result)
|
||||
__field(u8, retries)
|
||||
__field(u8, flags)
|
||||
__field(u16, status)
|
||||
),
|
||||
TP_fast_assign(
|
||||
__entry->ctrl_id = nvme_req(req)->ctrl->instance;
|
||||
__entry->qid = nvme_req_qid(req);
|
||||
__entry->cid = nvme_req(req)->cmd->common.command_id;
|
||||
__entry->result = le64_to_cpu(nvme_req(req)->result.u64);
|
||||
__entry->retries = nvme_req(req)->retries;
|
||||
__entry->flags = nvme_req(req)->flags;
|
||||
__entry->status = nvme_req(req)->status;
|
||||
__assign_disk_name(__entry->disk, req->rq_disk);
|
||||
),
|
||||
TP_printk("nvme%d: %sqid=%d, cmdid=%u, res=%#llx, retries=%u, flags=0x%x, status=%#x",
|
||||
__entry->ctrl_id, __print_disk_name(__entry->disk),
|
||||
__entry->qid, __entry->cid, __entry->result,
|
||||
__entry->retries, __entry->flags, __entry->status)
|
||||
|
||||
);
|
||||
|
||||
#define aer_name(aer) { aer, #aer }
|
||||
|
||||
TRACE_EVENT(nvme_async_event,
|
||||
TP_PROTO(struct nvme_ctrl *ctrl, u32 result),
|
||||
TP_ARGS(ctrl, result),
|
||||
TP_STRUCT__entry(
|
||||
__field(int, ctrl_id)
|
||||
__field(u32, result)
|
||||
),
|
||||
TP_fast_assign(
|
||||
__entry->ctrl_id = ctrl->instance;
|
||||
__entry->result = result;
|
||||
),
|
||||
TP_printk("nvme%d: NVME_AEN=%#08x [%s]",
|
||||
__entry->ctrl_id, __entry->result,
|
||||
__print_symbolic(__entry->result,
|
||||
aer_name(NVME_AER_NOTICE_NS_CHANGED),
|
||||
aer_name(NVME_AER_NOTICE_ANA),
|
||||
aer_name(NVME_AER_NOTICE_FW_ACT_STARTING),
|
||||
aer_name(NVME_AER_NOTICE_DISC_CHANGED),
|
||||
aer_name(NVME_AER_ERROR),
|
||||
aer_name(NVME_AER_SMART),
|
||||
aer_name(NVME_AER_CSS),
|
||||
aer_name(NVME_AER_VS))
|
||||
)
|
||||
);
|
||||
|
||||
#undef aer_name
|
||||
|
||||
TRACE_EVENT(nvme_sq,
|
||||
TP_PROTO(struct request *req, __le16 sq_head, int sq_tail),
|
||||
TP_ARGS(req, sq_head, sq_tail),
|
||||
TP_STRUCT__entry(
|
||||
__field(int, ctrl_id)
|
||||
__array(char, disk, DISK_NAME_LEN)
|
||||
__field(int, qid)
|
||||
__field(u16, sq_head)
|
||||
__field(u16, sq_tail)
|
||||
),
|
||||
TP_fast_assign(
|
||||
__entry->ctrl_id = nvme_req(req)->ctrl->instance;
|
||||
__assign_disk_name(__entry->disk, req->rq_disk);
|
||||
__entry->qid = nvme_req_qid(req);
|
||||
__entry->sq_head = le16_to_cpu(sq_head);
|
||||
__entry->sq_tail = sq_tail;
|
||||
),
|
||||
TP_printk("nvme%d: %sqid=%d, head=%u, tail=%u",
|
||||
__entry->ctrl_id, __print_disk_name(__entry->disk),
|
||||
__entry->qid, __entry->sq_head, __entry->sq_tail
|
||||
)
|
||||
);
|
||||
|
||||
#endif /* _TRACE_NVME_H */
|
||||
|
||||
#undef TRACE_INCLUDE_PATH
|
||||
#define TRACE_INCLUDE_PATH .
|
||||
#undef TRACE_INCLUDE_FILE
|
||||
#define TRACE_INCLUDE_FILE trace
|
||||
|
||||
/* This part must be outside protection */
|
||||
#include <trace/define_trace.h>
|
Loading…
Reference in New Issue
Block a user