remove RSA folder
This commit is contained in:
parent
7e190c4d23
commit
3f6142ba31
|
@ -1,45 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""RSA module
|
||||
|
||||
Module for calculating large primes, and RSA encryption, decryption, signing
|
||||
and verification. Includes generating public and private keys.
|
||||
|
||||
WARNING: this implementation does not use random padding, compression of the
|
||||
cleartext input to prevent repetitions, or other common security improvements.
|
||||
Use with care.
|
||||
|
||||
If you want to have a more secure implementation, use the functions from the
|
||||
``rsa.pkcs1`` module.
|
||||
|
||||
"""
|
||||
|
||||
__author__ = "Sybren Stuvel, Barry Mead and Yesudeep Mangalapilly"
|
||||
__date__ = "2012-06-17"
|
||||
__version__ = '3.1.1'
|
||||
|
||||
from rsa.key import newkeys, PrivateKey, PublicKey
|
||||
from rsa.pkcs1 import encrypt, decrypt, sign, verify, DecryptionError, \
|
||||
VerificationError
|
||||
|
||||
# Do doctest if we're run directly
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
|
||||
__all__ = ["newkeys", "encrypt", "decrypt", "sign", "verify", 'PublicKey',
|
||||
'PrivateKey', 'DecryptionError', 'VerificationError']
|
||||
|
160
rsa/_compat.py
160
rsa/_compat.py
|
@ -1,160 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Python compatibility wrappers."""
|
||||
|
||||
|
||||
from __future__ import absolute_import
|
||||
|
||||
import sys
|
||||
from struct import pack
|
||||
|
||||
try:
|
||||
MAX_INT = sys.maxsize
|
||||
except AttributeError:
|
||||
MAX_INT = sys.maxint
|
||||
|
||||
MAX_INT64 = (1 << 63) - 1
|
||||
MAX_INT32 = (1 << 31) - 1
|
||||
MAX_INT16 = (1 << 15) - 1
|
||||
|
||||
# Determine the word size of the processor.
|
||||
if MAX_INT == MAX_INT64:
|
||||
# 64-bit processor.
|
||||
MACHINE_WORD_SIZE = 64
|
||||
elif MAX_INT == MAX_INT32:
|
||||
# 32-bit processor.
|
||||
MACHINE_WORD_SIZE = 32
|
||||
else:
|
||||
# Else we just assume 64-bit processor keeping up with modern times.
|
||||
MACHINE_WORD_SIZE = 64
|
||||
|
||||
|
||||
try:
|
||||
# < Python3
|
||||
unicode_type = unicode
|
||||
have_python3 = False
|
||||
except NameError:
|
||||
# Python3.
|
||||
unicode_type = str
|
||||
have_python3 = True
|
||||
|
||||
# Fake byte literals.
|
||||
if str is unicode_type:
|
||||
def byte_literal(s):
|
||||
return s.encode('latin1')
|
||||
else:
|
||||
def byte_literal(s):
|
||||
return s
|
||||
|
||||
# ``long`` is no more. Do type detection using this instead.
|
||||
try:
|
||||
integer_types = (int, long)
|
||||
except NameError:
|
||||
integer_types = (int,)
|
||||
|
||||
b = byte_literal
|
||||
|
||||
try:
|
||||
# Python 2.6 or higher.
|
||||
bytes_type = bytes
|
||||
except NameError:
|
||||
# Python 2.5
|
||||
bytes_type = str
|
||||
|
||||
|
||||
# To avoid calling b() multiple times in tight loops.
|
||||
ZERO_BYTE = b('\x00')
|
||||
EMPTY_BYTE = b('')
|
||||
|
||||
|
||||
def is_bytes(obj):
|
||||
"""
|
||||
Determines whether the given value is a byte string.
|
||||
|
||||
:param obj:
|
||||
The value to test.
|
||||
:returns:
|
||||
``True`` if ``value`` is a byte string; ``False`` otherwise.
|
||||
"""
|
||||
return isinstance(obj, bytes_type)
|
||||
|
||||
|
||||
def is_integer(obj):
|
||||
"""
|
||||
Determines whether the given value is an integer.
|
||||
|
||||
:param obj:
|
||||
The value to test.
|
||||
:returns:
|
||||
``True`` if ``value`` is an integer; ``False`` otherwise.
|
||||
"""
|
||||
return isinstance(obj, integer_types)
|
||||
|
||||
|
||||
def byte(num):
|
||||
"""
|
||||
Converts a number between 0 and 255 (both inclusive) to a base-256 (byte)
|
||||
representation.
|
||||
|
||||
Use it as a replacement for ``chr`` where you are expecting a byte
|
||||
because this will work on all current versions of Python::
|
||||
|
||||
:param num:
|
||||
An unsigned integer between 0 and 255 (both inclusive).
|
||||
:returns:
|
||||
A single byte.
|
||||
"""
|
||||
return pack("B", num)
|
||||
|
||||
|
||||
def get_word_alignment(num, force_arch=64,
|
||||
_machine_word_size=MACHINE_WORD_SIZE):
|
||||
"""
|
||||
Returns alignment details for the given number based on the platform
|
||||
Python is running on.
|
||||
|
||||
:param num:
|
||||
Unsigned integral number.
|
||||
:param force_arch:
|
||||
If you don't want to use 64-bit unsigned chunks, set this to
|
||||
anything other than 64. 32-bit chunks will be preferred then.
|
||||
Default 64 will be used when on a 64-bit machine.
|
||||
:param _machine_word_size:
|
||||
(Internal) The machine word size used for alignment.
|
||||
:returns:
|
||||
4-tuple::
|
||||
|
||||
(word_bits, word_bytes,
|
||||
max_uint, packing_format_type)
|
||||
"""
|
||||
max_uint64 = 0xffffffffffffffff
|
||||
max_uint32 = 0xffffffff
|
||||
max_uint16 = 0xffff
|
||||
max_uint8 = 0xff
|
||||
|
||||
if force_arch == 64 and _machine_word_size >= 64 and num > max_uint32:
|
||||
# 64-bit unsigned integer.
|
||||
return 64, 8, max_uint64, "Q"
|
||||
elif num > max_uint16:
|
||||
# 32-bit unsigned integer
|
||||
return 32, 4, max_uint32, "L"
|
||||
elif num > max_uint8:
|
||||
# 16-bit unsigned integer.
|
||||
return 16, 2, max_uint16, "H"
|
||||
else:
|
||||
# 8-bit unsigned integer.
|
||||
return 8, 1, max_uint8, "B"
|
|
@ -1,442 +0,0 @@
|
|||
"""RSA module
|
||||
pri = k[1] //Private part of keys d,p,q
|
||||
|
||||
Module for calculating large primes, and RSA encryption, decryption,
|
||||
signing and verification. Includes generating public and private keys.
|
||||
|
||||
WARNING: this code implements the mathematics of RSA. It is not suitable for
|
||||
real-world secure cryptography purposes. It has not been reviewed by a security
|
||||
expert. It does not include padding of data. There are many ways in which the
|
||||
output of this module, when used without any modification, can be sucessfully
|
||||
attacked.
|
||||
"""
|
||||
|
||||
__author__ = "Sybren Stuvel, Marloes de Boer and Ivo Tamboer"
|
||||
__date__ = "2010-02-05"
|
||||
__version__ = '1.3.3'
|
||||
|
||||
# NOTE: Python's modulo can return negative numbers. We compensate for
|
||||
# this behaviour using the abs() function
|
||||
|
||||
from cPickle import dumps, loads
|
||||
import base64
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import types
|
||||
import zlib
|
||||
|
||||
from rsa._compat import byte
|
||||
|
||||
# Display a warning that this insecure version is imported.
|
||||
import warnings
|
||||
warnings.warn('Insecure version of the RSA module is imported as %s, be careful'
|
||||
% __name__)
|
||||
|
||||
def gcd(p, q):
|
||||
"""Returns the greatest common divisor of p and q
|
||||
|
||||
|
||||
>>> gcd(42, 6)
|
||||
6
|
||||
"""
|
||||
if p<q: return gcd(q, p)
|
||||
if q == 0: return p
|
||||
return gcd(q, abs(p%q))
|
||||
|
||||
def bytes2int(bytes):
|
||||
"""Converts a list of bytes or a string to an integer
|
||||
|
||||
>>> (128*256 + 64)*256 + + 15
|
||||
8405007
|
||||
>>> l = [128, 64, 15]
|
||||
>>> bytes2int(l)
|
||||
8405007
|
||||
"""
|
||||
|
||||
if not (type(bytes) is types.ListType or type(bytes) is types.StringType):
|
||||
raise TypeError("You must pass a string or a list")
|
||||
|
||||
# Convert byte stream to integer
|
||||
integer = 0
|
||||
for byte in bytes:
|
||||
integer *= 256
|
||||
if type(byte) is types.StringType: byte = ord(byte)
|
||||
integer += byte
|
||||
|
||||
return integer
|
||||
|
||||
def int2bytes(number):
|
||||
"""Converts a number to a string of bytes
|
||||
|
||||
>>> bytes2int(int2bytes(123456789))
|
||||
123456789
|
||||
"""
|
||||
|
||||
if not (type(number) is types.LongType or type(number) is types.IntType):
|
||||
raise TypeError("You must pass a long or an int")
|
||||
|
||||
string = ""
|
||||
|
||||
while number > 0:
|
||||
string = "%s%s" % (byte(number & 0xFF), string)
|
||||
number /= 256
|
||||
|
||||
return string
|
||||
|
||||
def fast_exponentiation(a, p, n):
|
||||
"""Calculates r = a^p mod n
|
||||
"""
|
||||
result = a % n
|
||||
remainders = []
|
||||
while p != 1:
|
||||
remainders.append(p & 1)
|
||||
p = p >> 1
|
||||
while remainders:
|
||||
rem = remainders.pop()
|
||||
result = ((a ** rem) * result ** 2) % n
|
||||
return result
|
||||
|
||||
def read_random_int(nbits):
|
||||
"""Reads a random integer of approximately nbits bits rounded up
|
||||
to whole bytes"""
|
||||
|
||||
nbytes = ceil(nbits/8.)
|
||||
randomdata = os.urandom(nbytes)
|
||||
return bytes2int(randomdata)
|
||||
|
||||
def ceil(x):
|
||||
"""ceil(x) -> int(math.ceil(x))"""
|
||||
|
||||
return int(math.ceil(x))
|
||||
|
||||
def randint(minvalue, maxvalue):
|
||||
"""Returns a random integer x with minvalue <= x <= maxvalue"""
|
||||
|
||||
# Safety - get a lot of random data even if the range is fairly
|
||||
# small
|
||||
min_nbits = 32
|
||||
|
||||
# The range of the random numbers we need to generate
|
||||
range = maxvalue - minvalue
|
||||
|
||||
# Which is this number of bytes
|
||||
rangebytes = ceil(math.log(range, 2) / 8.)
|
||||
|
||||
# Convert to bits, but make sure it's always at least min_nbits*2
|
||||
rangebits = max(rangebytes * 8, min_nbits * 2)
|
||||
|
||||
# Take a random number of bits between min_nbits and rangebits
|
||||
nbits = random.randint(min_nbits, rangebits)
|
||||
|
||||
return (read_random_int(nbits) % range) + minvalue
|
||||
|
||||
def fermat_little_theorem(p):
|
||||
"""Returns 1 if p may be prime, and something else if p definitely
|
||||
is not prime"""
|
||||
|
||||
a = randint(1, p-1)
|
||||
return fast_exponentiation(a, p-1, p)
|
||||
|
||||
def jacobi(a, b):
|
||||
"""Calculates the value of the Jacobi symbol (a/b)
|
||||
"""
|
||||
|
||||
if a % b == 0:
|
||||
return 0
|
||||
result = 1
|
||||
while a > 1:
|
||||
if a & 1:
|
||||
if ((a-1)*(b-1) >> 2) & 1:
|
||||
result = -result
|
||||
b, a = a, b % a
|
||||
else:
|
||||
if ((b ** 2 - 1) >> 3) & 1:
|
||||
result = -result
|
||||
a = a >> 1
|
||||
return result
|
||||
|
||||
def jacobi_witness(x, n):
|
||||
"""Returns False if n is an Euler pseudo-prime with base x, and
|
||||
True otherwise.
|
||||
"""
|
||||
|
||||
j = jacobi(x, n) % n
|
||||
f = fast_exponentiation(x, (n-1)/2, n)
|
||||
|
||||
if j == f: return False
|
||||
return True
|
||||
|
||||
def randomized_primality_testing(n, k):
|
||||
"""Calculates whether n is composite (which is always correct) or
|
||||
prime (which is incorrect with error probability 2**-k)
|
||||
|
||||
Returns False if the number if composite, and True if it's
|
||||
probably prime.
|
||||
"""
|
||||
|
||||
q = 0.5 # Property of the jacobi_witness function
|
||||
|
||||
# t = int(math.ceil(k / math.log(1/q, 2)))
|
||||
t = ceil(k / math.log(1/q, 2))
|
||||
for i in range(t+1):
|
||||
x = randint(1, n-1)
|
||||
if jacobi_witness(x, n): return False
|
||||
|
||||
return True
|
||||
|
||||
def is_prime(number):
|
||||
"""Returns True if the number is prime, and False otherwise.
|
||||
|
||||
>>> is_prime(42)
|
||||
0
|
||||
>>> is_prime(41)
|
||||
1
|
||||
"""
|
||||
|
||||
"""
|
||||
if not fermat_little_theorem(number) == 1:
|
||||
# Not prime, according to Fermat's little theorem
|
||||
return False
|
||||
"""
|
||||
|
||||
if randomized_primality_testing(number, 5):
|
||||
# Prime, according to Jacobi
|
||||
return True
|
||||
|
||||
# Not prime
|
||||
return False
|
||||
|
||||
|
||||
def getprime(nbits):
|
||||
"""Returns a prime number of max. 'math.ceil(nbits/8)*8' bits. In
|
||||
other words: nbits is rounded up to whole bytes.
|
||||
|
||||
>>> p = getprime(8)
|
||||
>>> is_prime(p-1)
|
||||
0
|
||||
>>> is_prime(p)
|
||||
1
|
||||
>>> is_prime(p+1)
|
||||
0
|
||||
"""
|
||||
|
||||
nbytes = int(math.ceil(nbits/8.))
|
||||
|
||||
while True:
|
||||
integer = read_random_int(nbits)
|
||||
|
||||
# Make sure it's odd
|
||||
integer |= 1
|
||||
|
||||
# Test for primeness
|
||||
if is_prime(integer): break
|
||||
|
||||
# Retry if not prime
|
||||
|
||||
return integer
|
||||
|
||||
def are_relatively_prime(a, b):
|
||||
"""Returns True if a and b are relatively prime, and False if they
|
||||
are not.
|
||||
|
||||
>>> are_relatively_prime(2, 3)
|
||||
1
|
||||
>>> are_relatively_prime(2, 4)
|
||||
0
|
||||
"""
|
||||
|
||||
d = gcd(a, b)
|
||||
return (d == 1)
|
||||
|
||||
def find_p_q(nbits):
|
||||
"""Returns a tuple of two different primes of nbits bits"""
|
||||
|
||||
p = getprime(nbits)
|
||||
while True:
|
||||
q = getprime(nbits)
|
||||
if not q == p: break
|
||||
|
||||
return (p, q)
|
||||
|
||||
def extended_euclid_gcd(a, b):
|
||||
"""Returns a tuple (d, i, j) such that d = gcd(a, b) = ia + jb
|
||||
"""
|
||||
|
||||
if b == 0:
|
||||
return (a, 1, 0)
|
||||
|
||||
q = abs(a % b)
|
||||
r = long(a / b)
|
||||
(d, k, l) = extended_euclid_gcd(b, q)
|
||||
|
||||
return (d, l, k - l*r)
|
||||
|
||||
# Main function: calculate encryption and decryption keys
|
||||
def calculate_keys(p, q, nbits):
|
||||
"""Calculates an encryption and a decryption key for p and q, and
|
||||
returns them as a tuple (e, d)"""
|
||||
|
||||
n = p * q
|
||||
phi_n = (p-1) * (q-1)
|
||||
|
||||
while True:
|
||||
# Make sure e has enough bits so we ensure "wrapping" through
|
||||
# modulo n
|
||||
e = getprime(max(8, nbits/2))
|
||||
if are_relatively_prime(e, n) and are_relatively_prime(e, phi_n): break
|
||||
|
||||
(d, i, j) = extended_euclid_gcd(e, phi_n)
|
||||
|
||||
if not d == 1:
|
||||
raise Exception("e (%d) and phi_n (%d) are not relatively prime" % (e, phi_n))
|
||||
|
||||
if not (e * i) % phi_n == 1:
|
||||
raise Exception("e (%d) and i (%d) are not mult. inv. modulo phi_n (%d)" % (e, i, phi_n))
|
||||
|
||||
return (e, i)
|
||||
|
||||
|
||||
def gen_keys(nbits):
|
||||
"""Generate RSA keys of nbits bits. Returns (p, q, e, d).
|
||||
|
||||
Note: this can take a long time, depending on the key size.
|
||||
"""
|
||||
|
||||
while True:
|
||||
(p, q) = find_p_q(nbits)
|
||||
(e, d) = calculate_keys(p, q, nbits)
|
||||
|
||||
# For some reason, d is sometimes negative. We don't know how
|
||||
# to fix it (yet), so we keep trying until everything is shiny
|
||||
if d > 0: break
|
||||
|
||||
return (p, q, e, d)
|
||||
|
||||
def gen_pubpriv_keys(nbits):
|
||||
"""Generates public and private keys, and returns them as (pub,
|
||||
priv).
|
||||
|
||||
The public key consists of a dict {e: ..., , n: ....). The private
|
||||
key consists of a dict {d: ...., p: ...., q: ....).
|
||||
"""
|
||||
|
||||
(p, q, e, d) = gen_keys(nbits)
|
||||
|
||||
return ( {'e': e, 'n': p*q}, {'d': d, 'p': p, 'q': q} )
|
||||
|
||||
def encrypt_int(message, ekey, n):
|
||||
"""Encrypts a message using encryption key 'ekey', working modulo
|
||||
n"""
|
||||
|
||||
if type(message) is types.IntType:
|
||||
return encrypt_int(long(message), ekey, n)
|
||||
|
||||
if not type(message) is types.LongType:
|
||||
raise TypeError("You must pass a long or an int")
|
||||
|
||||
if message > 0 and \
|
||||
math.floor(math.log(message, 2)) > math.floor(math.log(n, 2)):
|
||||
raise OverflowError("The message is too long")
|
||||
|
||||
return fast_exponentiation(message, ekey, n)
|
||||
|
||||
def decrypt_int(cyphertext, dkey, n):
|
||||
"""Decrypts a cypher text using the decryption key 'dkey', working
|
||||
modulo n"""
|
||||
|
||||
return encrypt_int(cyphertext, dkey, n)
|
||||
|
||||
def sign_int(message, dkey, n):
|
||||
"""Signs 'message' using key 'dkey', working modulo n"""
|
||||
|
||||
return decrypt_int(message, dkey, n)
|
||||
|
||||
def verify_int(signed, ekey, n):
|
||||
"""verifies 'signed' using key 'ekey', working modulo n"""
|
||||
|
||||
return encrypt_int(signed, ekey, n)
|
||||
|
||||
def picklechops(chops):
|
||||
"""Pickles and base64encodes it's argument chops"""
|
||||
|
||||
value = zlib.compress(dumps(chops))
|
||||
encoded = base64.encodestring(value)
|
||||
return encoded.strip()
|
||||
|
||||
def unpicklechops(string):
|
||||
"""base64decodes and unpickes it's argument string into chops"""
|
||||
|
||||
return loads(zlib.decompress(base64.decodestring(string)))
|
||||
|
||||
def chopstring(message, key, n, funcref):
|
||||
"""Splits 'message' into chops that are at most as long as n,
|
||||
converts these into integers, and calls funcref(integer, key, n)
|
||||
for each chop.
|
||||
|
||||
Used by 'encrypt' and 'sign'.
|
||||
"""
|
||||
|
||||
msglen = len(message)
|
||||
mbits = msglen * 8
|
||||
nbits = int(math.floor(math.log(n, 2)))
|
||||
nbytes = nbits / 8
|
||||
blocks = msglen / nbytes
|
||||
|
||||
if msglen % nbytes > 0:
|
||||
blocks += 1
|
||||
|
||||
cypher = []
|
||||
|
||||
for bindex in range(blocks):
|
||||
offset = bindex * nbytes
|
||||
block = message[offset:offset+nbytes]
|
||||
value = bytes2int(block)
|
||||
cypher.append(funcref(value, key, n))
|
||||
|
||||
return picklechops(cypher)
|
||||
|
||||
def gluechops(chops, key, n, funcref):
|
||||
"""Glues chops back together into a string. calls
|
||||
funcref(integer, key, n) for each chop.
|
||||
|
||||
Used by 'decrypt' and 'verify'.
|
||||
"""
|
||||
message = ""
|
||||
|
||||
chops = unpicklechops(chops)
|
||||
|
||||
for cpart in chops:
|
||||
mpart = funcref(cpart, key, n)
|
||||
message += int2bytes(mpart)
|
||||
|
||||
return message
|
||||
|
||||
def encrypt(message, key):
|
||||
"""Encrypts a string 'message' with the public key 'key'"""
|
||||
|
||||
return chopstring(message, key['e'], key['n'], encrypt_int)
|
||||
|
||||
def sign(message, key):
|
||||
"""Signs a string 'message' with the private key 'key'"""
|
||||
|
||||
return chopstring(message, key['d'], key['p']*key['q'], decrypt_int)
|
||||
|
||||
def decrypt(cypher, key):
|
||||
"""Decrypts a cypher with the private key 'key'"""
|
||||
|
||||
return gluechops(cypher, key['d'], key['p']*key['q'], decrypt_int)
|
||||
|
||||
def verify(cypher, key):
|
||||
"""Verifies a cypher with the public key 'key'"""
|
||||
|
||||
return gluechops(cypher, key['e'], key['n'], encrypt_int)
|
||||
|
||||
# Do doctest if we're not imported
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
|
||||
__all__ = ["gen_pubpriv_keys", "encrypt", "decrypt", "sign", "verify"]
|
||||
|
|
@ -1,529 +0,0 @@
|
|||
"""RSA module
|
||||
|
||||
Module for calculating large primes, and RSA encryption, decryption,
|
||||
signing and verification. Includes generating public and private keys.
|
||||
|
||||
WARNING: this implementation does not use random padding, compression of the
|
||||
cleartext input to prevent repetitions, or other common security improvements.
|
||||
Use with care.
|
||||
|
||||
"""
|
||||
|
||||
__author__ = "Sybren Stuvel, Marloes de Boer, Ivo Tamboer, and Barry Mead"
|
||||
__date__ = "2010-02-08"
|
||||
__version__ = '2.0'
|
||||
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import types
|
||||
from rsa._compat import byte
|
||||
|
||||
# Display a warning that this insecure version is imported.
|
||||
import warnings
|
||||
warnings.warn('Insecure version of the RSA module is imported as %s' % __name__)
|
||||
|
||||
|
||||
def bit_size(number):
|
||||
"""Returns the number of bits required to hold a specific long number"""
|
||||
|
||||
return int(math.ceil(math.log(number,2)))
|
||||
|
||||
def gcd(p, q):
|
||||
"""Returns the greatest common divisor of p and q
|
||||
>>> gcd(48, 180)
|
||||
12
|
||||
"""
|
||||
# Iterateive Version is faster and uses much less stack space
|
||||
while q != 0:
|
||||
if p < q: (p,q) = (q,p)
|
||||
(p,q) = (q, p % q)
|
||||
return p
|
||||
|
||||
|
||||
def bytes2int(bytes):
|
||||
"""Converts a list of bytes or a string to an integer
|
||||
|
||||
>>> (((128 * 256) + 64) * 256) + 15
|
||||
8405007
|
||||
>>> l = [128, 64, 15]
|
||||
>>> bytes2int(l) #same as bytes2int('\x80@\x0f')
|
||||
8405007
|
||||
"""
|
||||
|
||||
if not (type(bytes) is types.ListType or type(bytes) is types.StringType):
|
||||
raise TypeError("You must pass a string or a list")
|
||||
|
||||
# Convert byte stream to integer
|
||||
integer = 0
|
||||
for byte in bytes:
|
||||
integer *= 256
|
||||
if type(byte) is types.StringType: byte = ord(byte)
|
||||
integer += byte
|
||||
|
||||
return integer
|
||||
|
||||
def int2bytes(number):
|
||||
"""
|
||||
Converts a number to a string of bytes
|
||||
"""
|
||||
|
||||
if not (type(number) is types.LongType or type(number) is types.IntType):
|
||||
raise TypeError("You must pass a long or an int")
|
||||
|
||||
string = ""
|
||||
|
||||
while number > 0:
|
||||
string = "%s%s" % (byte(number & 0xFF), string)
|
||||
number /= 256
|
||||
|
||||
return string
|
||||
|
||||
def to64(number):
|
||||
"""Converts a number in the range of 0 to 63 into base 64 digit
|
||||
character in the range of '0'-'9', 'A'-'Z', 'a'-'z','-','_'.
|
||||
|
||||
>>> to64(10)
|
||||
'A'
|
||||
"""
|
||||
|
||||
if not (type(number) is types.LongType or type(number) is types.IntType):
|
||||
raise TypeError("You must pass a long or an int")
|
||||
|
||||
if 0 <= number <= 9: #00-09 translates to '0' - '9'
|
||||
return byte(number + 48)
|
||||
|
||||
if 10 <= number <= 35:
|
||||
return byte(number + 55) #10-35 translates to 'A' - 'Z'
|
||||
|
||||
if 36 <= number <= 61:
|
||||
return byte(number + 61) #36-61 translates to 'a' - 'z'
|
||||
|
||||
if number == 62: # 62 translates to '-' (minus)
|
||||
return byte(45)
|
||||
|
||||
if number == 63: # 63 translates to '_' (underscore)
|
||||
return byte(95)
|
||||
|
||||
raise ValueError('Invalid Base64 value: %i' % number)
|
||||
|
||||
|
||||
def from64(number):
|
||||
"""Converts an ordinal character value in the range of
|
||||
0-9,A-Z,a-z,-,_ to a number in the range of 0-63.
|
||||
|
||||
>>> from64(49)
|
||||
1
|
||||
"""
|
||||
|
||||
if not (type(number) is types.LongType or type(number) is types.IntType):
|
||||
raise TypeError("You must pass a long or an int")
|
||||
|
||||
if 48 <= number <= 57: #ord('0') - ord('9') translates to 0-9
|
||||
return(number - 48)
|
||||
|
||||
if 65 <= number <= 90: #ord('A') - ord('Z') translates to 10-35
|
||||
return(number - 55)
|
||||
|
||||
if 97 <= number <= 122: #ord('a') - ord('z') translates to 36-61
|
||||
return(number - 61)
|
||||
|
||||
if number == 45: #ord('-') translates to 62
|
||||
return(62)
|
||||
|
||||
if number == 95: #ord('_') translates to 63
|
||||
return(63)
|
||||
|
||||
raise ValueError('Invalid Base64 value: %i' % number)
|
||||
|
||||
|
||||
def int2str64(number):
|
||||
"""Converts a number to a string of base64 encoded characters in
|
||||
the range of '0'-'9','A'-'Z,'a'-'z','-','_'.
|
||||
|
||||
>>> int2str64(123456789)
|
||||
'7MyqL'
|
||||
"""
|
||||
|
||||
if not (type(number) is types.LongType or type(number) is types.IntType):
|
||||
raise TypeError("You must pass a long or an int")
|
||||
|
||||
string = ""
|
||||
|
||||
while number > 0:
|
||||
string = "%s%s" % (to64(number & 0x3F), string)
|
||||
number /= 64
|
||||
|
||||
return string
|
||||
|
||||
|
||||
def str642int(string):
|
||||
"""Converts a base64 encoded string into an integer.
|
||||
The chars of this string in in the range '0'-'9','A'-'Z','a'-'z','-','_'
|
||||
|
||||
>>> str642int('7MyqL')
|
||||
123456789
|
||||
"""
|
||||
|
||||
if not (type(string) is types.ListType or type(string) is types.StringType):
|
||||
raise TypeError("You must pass a string or a list")
|
||||
|
||||
integer = 0
|
||||
for byte in string:
|
||||
integer *= 64
|
||||
if type(byte) is types.StringType: byte = ord(byte)
|
||||
integer += from64(byte)
|
||||
|
||||
return integer
|
||||
|
||||
def read_random_int(nbits):
|
||||
"""Reads a random integer of approximately nbits bits rounded up
|
||||
to whole bytes"""
|
||||
|
||||
nbytes = int(math.ceil(nbits/8.))
|
||||
randomdata = os.urandom(nbytes)
|
||||
return bytes2int(randomdata)
|
||||
|
||||
def randint(minvalue, maxvalue):
|
||||
"""Returns a random integer x with minvalue <= x <= maxvalue"""
|
||||
|
||||
# Safety - get a lot of random data even if the range is fairly
|
||||
# small
|
||||
min_nbits = 32
|
||||
|
||||
# The range of the random numbers we need to generate
|
||||
range = (maxvalue - minvalue) + 1
|
||||
|
||||
# Which is this number of bytes
|
||||
rangebytes = ((bit_size(range) + 7) / 8)
|
||||
|
||||
# Convert to bits, but make sure it's always at least min_nbits*2
|
||||
rangebits = max(rangebytes * 8, min_nbits * 2)
|
||||
|
||||
# Take a random number of bits between min_nbits and rangebits
|
||||
nbits = random.randint(min_nbits, rangebits)
|
||||
|
||||
return (read_random_int(nbits) % range) + minvalue
|
||||
|
||||
def jacobi(a, b):
|
||||
"""Calculates the value of the Jacobi symbol (a/b)
|
||||
where both a and b are positive integers, and b is odd
|
||||
"""
|
||||
|
||||
if a == 0: return 0
|
||||
result = 1
|
||||
while a > 1:
|
||||
if a & 1:
|
||||
if ((a-1)*(b-1) >> 2) & 1:
|
||||
result = -result
|
||||
a, b = b % a, a
|
||||
else:
|
||||
if (((b * b) - 1) >> 3) & 1:
|
||||
result = -result
|
||||
a >>= 1
|
||||
if a == 0: return 0
|
||||
return result
|
||||
|
||||
def jacobi_witness(x, n):
|
||||
"""Returns False if n is an Euler pseudo-prime with base x, and
|
||||
True otherwise.
|
||||
"""
|
||||
|
||||
j = jacobi(x, n) % n
|
||||
f = pow(x, (n-1)/2, n)
|
||||
|
||||
if j == f: return False
|
||||
return True
|
||||
|
||||
def randomized_primality_testing(n, k):
|
||||
"""Calculates whether n is composite (which is always correct) or
|
||||
prime (which is incorrect with error probability 2**-k)
|
||||
|
||||
Returns False if the number is composite, and True if it's
|
||||
probably prime.
|
||||
"""
|
||||
|
||||
# 50% of Jacobi-witnesses can report compositness of non-prime numbers
|
||||
|
||||
for i in range(k):
|
||||
x = randint(1, n-1)
|
||||
if jacobi_witness(x, n): return False
|
||||
|
||||
return True
|
||||
|
||||
def is_prime(number):
|
||||
"""Returns True if the number is prime, and False otherwise.
|
||||
|
||||
>>> is_prime(42)
|
||||
0
|
||||
>>> is_prime(41)
|
||||
1
|
||||
"""
|
||||
|
||||
if randomized_primality_testing(number, 6):
|
||||
# Prime, according to Jacobi
|
||||
return True
|
||||
|
||||
# Not prime
|
||||
return False
|
||||
|
||||
|
||||
def getprime(nbits):
|
||||
"""Returns a prime number of max. 'math.ceil(nbits/8)*8' bits. In
|
||||
other words: nbits is rounded up to whole bytes.
|
||||
|
||||
>>> p = getprime(8)
|
||||
>>> is_prime(p-1)
|
||||
0
|
||||
>>> is_prime(p)
|
||||
1
|
||||
>>> is_prime(p+1)
|
||||
0
|
||||
"""
|
||||
|
||||
while True:
|
||||
integer = read_random_int(nbits)
|
||||
|
||||
# Make sure it's odd
|
||||
integer |= 1
|
||||
|
||||
# Test for primeness
|
||||
if is_prime(integer): break
|
||||
|
||||
# Retry if not prime
|
||||
|
||||
return integer
|
||||
|
||||
def are_relatively_prime(a, b):
|
||||
"""Returns True if a and b are relatively prime, and False if they
|
||||
are not.
|
||||
|
||||
>>> are_relatively_prime(2, 3)
|
||||
1
|
||||
>>> are_relatively_prime(2, 4)
|
||||
0
|
||||
"""
|
||||
|
||||
d = gcd(a, b)
|
||||
return (d == 1)
|
||||
|
||||
def find_p_q(nbits):
|
||||
"""Returns a tuple of two different primes of nbits bits"""
|
||||
pbits = nbits + (nbits/16) #Make sure that p and q aren't too close
|
||||
qbits = nbits - (nbits/16) #or the factoring programs can factor n
|
||||
p = getprime(pbits)
|
||||
while True:
|
||||
q = getprime(qbits)
|
||||
#Make sure p and q are different.
|
||||
if not q == p: break
|
||||
return (p, q)
|
||||
|
||||
def extended_gcd(a, b):
|
||||
"""Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb
|
||||
"""
|
||||
# r = gcd(a,b) i = multiplicitive inverse of a mod b
|
||||
# or j = multiplicitive inverse of b mod a
|
||||
# Neg return values for i or j are made positive mod b or a respectively
|
||||
# Iterateive Version is faster and uses much less stack space
|
||||
x = 0
|
||||
y = 1
|
||||
lx = 1
|
||||
ly = 0
|
||||
oa = a #Remember original a/b to remove
|
||||
ob = b #negative values from return results
|
||||
while b != 0:
|
||||
q = long(a/b)
|
||||
(a, b) = (b, a % b)
|
||||
(x, lx) = ((lx - (q * x)),x)
|
||||
(y, ly) = ((ly - (q * y)),y)
|
||||
if (lx < 0): lx += ob #If neg wrap modulo orignal b
|
||||
if (ly < 0): ly += oa #If neg wrap modulo orignal a
|
||||
return (a, lx, ly) #Return only positive values
|
||||
|
||||
# Main function: calculate encryption and decryption keys
|
||||
def calculate_keys(p, q, nbits):
|
||||
"""Calculates an encryption and a decryption key for p and q, and
|
||||
returns them as a tuple (e, d)"""
|
||||
|
||||
n = p * q
|
||||
phi_n = (p-1) * (q-1)
|
||||
|
||||
while True:
|
||||
# Make sure e has enough bits so we ensure "wrapping" through
|
||||
# modulo n
|
||||
e = max(65537,getprime(nbits/4))
|
||||
if are_relatively_prime(e, n) and are_relatively_prime(e, phi_n): break
|
||||
|
||||
(d, i, j) = extended_gcd(e, phi_n)
|
||||
|
||||
if not d == 1:
|
||||
raise Exception("e (%d) and phi_n (%d) are not relatively prime" % (e, phi_n))
|
||||
if (i < 0):
|
||||
raise Exception("New extended_gcd shouldn't return negative values")
|
||||
if not (e * i) % phi_n == 1:
|
||||
raise Exception("e (%d) and i (%d) are not mult. inv. modulo phi_n (%d)" % (e, i, phi_n))
|
||||
|
||||
return (e, i)
|
||||
|
||||
|
||||
def gen_keys(nbits):
|
||||
"""Generate RSA keys of nbits bits. Returns (p, q, e, d).
|
||||
|
||||
Note: this can take a long time, depending on the key size.
|
||||
"""
|
||||
|
||||
(p, q) = find_p_q(nbits)
|
||||
(e, d) = calculate_keys(p, q, nbits)
|
||||
|
||||
return (p, q, e, d)
|
||||
|
||||
def newkeys(nbits):
|
||||
"""Generates public and private keys, and returns them as (pub,
|
||||
priv).
|
||||
|
||||
The public key consists of a dict {e: ..., , n: ....). The private
|
||||
key consists of a dict {d: ...., p: ...., q: ....).
|
||||
"""
|
||||
nbits = max(9,nbits) # Don't let nbits go below 9 bits
|
||||
(p, q, e, d) = gen_keys(nbits)
|
||||
|
||||
return ( {'e': e, 'n': p*q}, {'d': d, 'p': p, 'q': q} )
|
||||
|
||||
def encrypt_int(message, ekey, n):
|
||||
"""Encrypts a message using encryption key 'ekey', working modulo n"""
|
||||
|
||||
if type(message) is types.IntType:
|
||||
message = long(message)
|
||||
|
||||
if not type(message) is types.LongType:
|
||||
raise TypeError("You must pass a long or int")
|
||||
|
||||
if message < 0 or message > n:
|
||||
raise OverflowError("The message is too long")
|
||||
|
||||
#Note: Bit exponents start at zero (bit counts start at 1) this is correct
|
||||
safebit = bit_size(n) - 2 #compute safe bit (MSB - 1)
|
||||
message += (1 << safebit) #add safebit to ensure folding
|
||||
|
||||
return pow(message, ekey, n)
|
||||
|
||||
def decrypt_int(cyphertext, dkey, n):
|
||||
"""Decrypts a cypher text using the decryption key 'dkey', working
|
||||
modulo n"""
|
||||
|
||||
message = pow(cyphertext, dkey, n)
|
||||
|
||||
safebit = bit_size(n) - 2 #compute safe bit (MSB - 1)
|
||||
message -= (1 << safebit) #remove safebit before decode
|
||||
|
||||
return message
|
||||
|
||||
def encode64chops(chops):
|
||||
"""base64encodes chops and combines them into a ',' delimited string"""
|
||||
|
||||
chips = [] #chips are character chops
|
||||
|
||||
for value in chops:
|
||||
chips.append(int2str64(value))
|
||||
|
||||
#delimit chops with comma
|
||||
encoded = ','.join(chips)
|
||||
|
||||
return encoded
|
||||
|
||||
def decode64chops(string):
|
||||
"""base64decodes and makes a ',' delimited string into chops"""
|
||||
|
||||
chips = string.split(',') #split chops at commas
|
||||
|
||||
chops = []
|
||||
|
||||
for string in chips: #make char chops (chips) into chops
|
||||
chops.append(str642int(string))
|
||||
|
||||
return chops
|
||||
|
||||
def chopstring(message, key, n, funcref):
|
||||
"""Chops the 'message' into integers that fit into n,
|
||||
leaving room for a safebit to be added to ensure that all
|
||||
messages fold during exponentiation. The MSB of the number n
|
||||
is not independant modulo n (setting it could cause overflow), so
|
||||
use the next lower bit for the safebit. Therefore reserve 2-bits
|
||||
in the number n for non-data bits. Calls specified encryption
|
||||
function for each chop.
|
||||
|
||||
Used by 'encrypt' and 'sign'.
|
||||
"""
|
||||
|
||||
msglen = len(message)
|
||||
mbits = msglen * 8
|
||||
#Set aside 2-bits so setting of safebit won't overflow modulo n.
|
||||
nbits = bit_size(n) - 2 # leave room for safebit
|
||||
nbytes = nbits / 8
|
||||
blocks = msglen / nbytes
|
||||
|
||||
if msglen % nbytes > 0:
|
||||
blocks += 1
|
||||
|
||||
cypher = []
|
||||
|
||||
for bindex in range(blocks):
|
||||
offset = bindex * nbytes
|
||||
block = message[offset:offset+nbytes]
|
||||
value = bytes2int(block)
|
||||
cypher.append(funcref(value, key, n))
|
||||
|
||||
return encode64chops(cypher) #Encode encrypted ints to base64 strings
|
||||
|
||||
def gluechops(string, key, n, funcref):
|
||||
"""Glues chops back together into a string. calls
|
||||
funcref(integer, key, n) for each chop.
|
||||
|
||||
Used by 'decrypt' and 'verify'.
|
||||
"""
|
||||
message = ""
|
||||
|
||||
chops = decode64chops(string) #Decode base64 strings into integer chops
|
||||
|
||||
for cpart in chops:
|
||||
mpart = funcref(cpart, key, n) #Decrypt each chop
|
||||
message += int2bytes(mpart) #Combine decrypted strings into a msg
|
||||
|
||||
return message
|
||||
|
||||
def encrypt(message, key):
|
||||
"""Encrypts a string 'message' with the public key 'key'"""
|
||||
if 'n' not in key:
|
||||
raise Exception("You must use the public key with encrypt")
|
||||
|
||||
return chopstring(message, key['e'], key['n'], encrypt_int)
|
||||
|
||||
def sign(message, key):
|
||||
"""Signs a string 'message' with the private key 'key'"""
|
||||
if 'p' not in key:
|
||||
raise Exception("You must use the private key with sign")
|
||||
|
||||
return chopstring(message, key['d'], key['p']*key['q'], encrypt_int)
|
||||
|
||||
def decrypt(cypher, key):
|
||||
"""Decrypts a string 'cypher' with the private key 'key'"""
|
||||
if 'p' not in key:
|
||||
raise Exception("You must use the private key with decrypt")
|
||||
|
||||
return gluechops(cypher, key['d'], key['p']*key['q'], decrypt_int)
|
||||
|
||||
def verify(cypher, key):
|
||||
"""Verifies a string 'cypher' with the public key 'key'"""
|
||||
if 'n' not in key:
|
||||
raise Exception("You must use the public key with verify")
|
||||
|
||||
return gluechops(cypher, key['e'], key['n'], decrypt_int)
|
||||
|
||||
# Do doctest if we're not imported
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
|
||||
__all__ = ["newkeys", "encrypt", "decrypt", "sign", "verify"]
|
||||
|
|
@ -1,87 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Large file support
|
||||
|
||||
- break a file into smaller blocks, and encrypt them, and store the
|
||||
encrypted blocks in another file.
|
||||
|
||||
- take such an encrypted files, decrypt its blocks, and reconstruct the
|
||||
original file.
|
||||
|
||||
The encrypted file format is as follows, where || denotes byte concatenation:
|
||||
|
||||
FILE := VERSION || BLOCK || BLOCK ...
|
||||
|
||||
BLOCK := LENGTH || DATA
|
||||
|
||||
LENGTH := varint-encoded length of the subsequent data. Varint comes from
|
||||
Google Protobuf, and encodes an integer into a variable number of bytes.
|
||||
Each byte uses the 7 lowest bits to encode the value. The highest bit set
|
||||
to 1 indicates the next byte is also part of the varint. The last byte will
|
||||
have this bit set to 0.
|
||||
|
||||
This file format is called the VARBLOCK format, in line with the varint format
|
||||
used to denote the block sizes.
|
||||
|
||||
'''
|
||||
|
||||
from rsa import key, common, pkcs1, varblock
|
||||
from rsa._compat import byte
|
||||
|
||||
def encrypt_bigfile(infile, outfile, pub_key):
|
||||
'''Encrypts a file, writing it to 'outfile' in VARBLOCK format.
|
||||
|
||||
:param infile: file-like object to read the cleartext from
|
||||
:param outfile: file-like object to write the crypto in VARBLOCK format to
|
||||
:param pub_key: :py:class:`rsa.PublicKey` to encrypt with
|
||||
|
||||
'''
|
||||
|
||||
if not isinstance(pub_key, key.PublicKey):
|
||||
raise TypeError('Public key required, but got %r' % pub_key)
|
||||
|
||||
key_bytes = common.bit_size(pub_key.n) // 8
|
||||
blocksize = key_bytes - 11 # keep space for PKCS#1 padding
|
||||
|
||||
# Write the version number to the VARBLOCK file
|
||||
outfile.write(byte(varblock.VARBLOCK_VERSION))
|
||||
|
||||
# Encrypt and write each block
|
||||
for block in varblock.yield_fixedblocks(infile, blocksize):
|
||||
crypto = pkcs1.encrypt(block, pub_key)
|
||||
|
||||
varblock.write_varint(outfile, len(crypto))
|
||||
outfile.write(crypto)
|
||||
|
||||
def decrypt_bigfile(infile, outfile, priv_key):
|
||||
'''Decrypts an encrypted VARBLOCK file, writing it to 'outfile'
|
||||
|
||||
:param infile: file-like object to read the crypto in VARBLOCK format from
|
||||
:param outfile: file-like object to write the cleartext to
|
||||
:param priv_key: :py:class:`rsa.PrivateKey` to decrypt with
|
||||
|
||||
'''
|
||||
|
||||
if not isinstance(priv_key, key.PrivateKey):
|
||||
raise TypeError('Private key required, but got %r' % priv_key)
|
||||
|
||||
for block in varblock.yield_varblocks(infile):
|
||||
cleartext = pkcs1.decrypt(block, priv_key)
|
||||
outfile.write(cleartext)
|
||||
|
||||
__all__ = ['encrypt_bigfile', 'decrypt_bigfile']
|
||||
|
379
rsa/cli.py
379
rsa/cli.py
|
@ -1,379 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Commandline scripts.
|
||||
|
||||
These scripts are called by the executables defined in setup.py.
|
||||
'''
|
||||
|
||||
from __future__ import with_statement, print_function
|
||||
|
||||
import abc
|
||||
import sys
|
||||
from optparse import OptionParser
|
||||
|
||||
import rsa
|
||||
import rsa.bigfile
|
||||
import rsa.pkcs1
|
||||
|
||||
HASH_METHODS = sorted(rsa.pkcs1.HASH_METHODS.keys())
|
||||
|
||||
def keygen():
|
||||
'''Key generator.'''
|
||||
|
||||
# Parse the CLI options
|
||||
parser = OptionParser(usage='usage: %prog [options] keysize',
|
||||
description='Generates a new RSA keypair of "keysize" bits.')
|
||||
|
||||
parser.add_option('--pubout', type='string',
|
||||
help='Output filename for the public key. The public key is '
|
||||
'not saved if this option is not present. You can use '
|
||||
'pyrsa-priv2pub to create the public key file later.')
|
||||
|
||||
parser.add_option('-o', '--out', type='string',
|
||||
help='Output filename for the private key. The key is '
|
||||
'written to stdout if this option is not present.')
|
||||
|
||||
parser.add_option('--form',
|
||||
help='key format of the private and public keys - default PEM',
|
||||
choices=('PEM', 'DER'), default='PEM')
|
||||
|
||||
(cli, cli_args) = parser.parse_args(sys.argv[1:])
|
||||
|
||||
if len(cli_args) != 1:
|
||||
parser.print_help()
|
||||
raise SystemExit(1)
|
||||
|
||||
try:
|
||||
keysize = int(cli_args[0])
|
||||
except ValueError:
|
||||
parser.print_help()
|
||||
print('Not a valid number: %s' % cli_args[0], file=sys.stderr)
|
||||
raise SystemExit(1)
|
||||
|
||||
print('Generating %i-bit key' % keysize, file=sys.stderr)
|
||||
(pub_key, priv_key) = rsa.newkeys(keysize)
|
||||
|
||||
|
||||
# Save public key
|
||||
if cli.pubout:
|
||||
print('Writing public key to %s' % cli.pubout, file=sys.stderr)
|
||||
data = pub_key.save_pkcs1(format=cli.form)
|
||||
with open(cli.pubout, 'wb') as outfile:
|
||||
outfile.write(data)
|
||||
|
||||
# Save private key
|
||||
data = priv_key.save_pkcs1(format=cli.form)
|
||||
|
||||
if cli.out:
|
||||
print('Writing private key to %s' % cli.out, file=sys.stderr)
|
||||
with open(cli.out, 'wb') as outfile:
|
||||
outfile.write(data)
|
||||
else:
|
||||
print('Writing private key to stdout', file=sys.stderr)
|
||||
sys.stdout.write(data)
|
||||
|
||||
|
||||
class CryptoOperation(object):
|
||||
'''CLI callable that operates with input, output, and a key.'''
|
||||
|
||||
__metaclass__ = abc.ABCMeta
|
||||
|
||||
keyname = 'public' # or 'private'
|
||||
usage = 'usage: %%prog [options] %(keyname)s_key'
|
||||
description = None
|
||||
operation = 'decrypt'
|
||||
operation_past = 'decrypted'
|
||||
operation_progressive = 'decrypting'
|
||||
input_help = 'Name of the file to %(operation)s. Reads from stdin if ' \
|
||||
'not specified.'
|
||||
output_help = 'Name of the file to write the %(operation_past)s file ' \
|
||||
'to. Written to stdout if this option is not present.'
|
||||
expected_cli_args = 1
|
||||
has_output = True
|
||||
|
||||
key_class = rsa.PublicKey
|
||||
|
||||
def __init__(self):
|
||||
self.usage = self.usage % self.__class__.__dict__
|
||||
self.input_help = self.input_help % self.__class__.__dict__
|
||||
self.output_help = self.output_help % self.__class__.__dict__
|
||||
|
||||
@abc.abstractmethod
|
||||
def perform_operation(self, indata, key, cli_args=None):
|
||||
'''Performs the program's operation.
|
||||
|
||||
Implement in a subclass.
|
||||
|
||||
:returns: the data to write to the output.
|
||||
'''
|
||||
|
||||
def __call__(self):
|
||||
'''Runs the program.'''
|
||||
|
||||
(cli, cli_args) = self.parse_cli()
|
||||
|
||||
key = self.read_key(cli_args[0], cli.keyform)
|
||||
|
||||
indata = self.read_infile(cli.input)
|
||||
|
||||
print(self.operation_progressive.title(), file=sys.stderr)
|
||||
outdata = self.perform_operation(indata, key, cli_args)
|
||||
|
||||
if self.has_output:
|
||||
self.write_outfile(outdata, cli.output)
|
||||
|
||||
def parse_cli(self):
|
||||
'''Parse the CLI options
|
||||
|
||||
:returns: (cli_opts, cli_args)
|
||||
'''
|
||||
|
||||
parser = OptionParser(usage=self.usage, description=self.description)
|
||||
|
||||
parser.add_option('-i', '--input', type='string', help=self.input_help)
|
||||
|
||||
if self.has_output:
|
||||
parser.add_option('-o', '--output', type='string', help=self.output_help)
|
||||
|
||||
parser.add_option('--keyform',
|
||||
help='Key format of the %s key - default PEM' % self.keyname,
|
||||
choices=('PEM', 'DER'), default='PEM')
|
||||
|
||||
(cli, cli_args) = parser.parse_args(sys.argv[1:])
|
||||
|
||||
if len(cli_args) != self.expected_cli_args:
|
||||
parser.print_help()
|
||||
raise SystemExit(1)
|
||||
|
||||
return (cli, cli_args)
|
||||
|
||||
def read_key(self, filename, keyform):
|
||||
'''Reads a public or private key.'''
|
||||
|
||||
print('Reading %s key from %s' % (self.keyname, filename), file=sys.stderr)
|
||||
with open(filename, 'rb') as keyfile:
|
||||
keydata = keyfile.read()
|
||||
|
||||
return self.key_class.load_pkcs1(keydata, keyform)
|
||||
|
||||
def read_infile(self, inname):
|
||||
'''Read the input file'''
|
||||
|
||||
if inname:
|
||||
print('Reading input from %s' % inname, file=sys.stderr)
|
||||
with open(inname, 'rb') as infile:
|
||||
return infile.read()
|
||||
|
||||
print('Reading input from stdin', file=sys.stderr)
|
||||
return sys.stdin.read()
|
||||
|
||||
def write_outfile(self, outdata, outname):
|
||||
'''Write the output file'''
|
||||
|
||||
if outname:
|
||||
print('Writing output to %s' % outname, file=sys.stderr)
|
||||
with open(outname, 'wb') as outfile:
|
||||
outfile.write(outdata)
|
||||
else:
|
||||
print('Writing output to stdout', file=sys.stderr)
|
||||
sys.stdout.write(outdata)
|
||||
|
||||
class EncryptOperation(CryptoOperation):
|
||||
'''Encrypts a file.'''
|
||||
|
||||
keyname = 'public'
|
||||
description = ('Encrypts a file. The file must be shorter than the key '
|
||||
'length in order to be encrypted. For larger files, use the '
|
||||
'pyrsa-encrypt-bigfile command.')
|
||||
operation = 'encrypt'
|
||||
operation_past = 'encrypted'
|
||||
operation_progressive = 'encrypting'
|
||||
|
||||
|
||||
def perform_operation(self, indata, pub_key, cli_args=None):
|
||||
'''Encrypts files.'''
|
||||
|
||||
return rsa.encrypt(indata, pub_key)
|
||||
|
||||
class DecryptOperation(CryptoOperation):
|
||||
'''Decrypts a file.'''
|
||||
|
||||
keyname = 'private'
|
||||
description = ('Decrypts a file. The original file must be shorter than '
|
||||
'the key length in order to have been encrypted. For larger '
|
||||
'files, use the pyrsa-decrypt-bigfile command.')
|
||||
operation = 'decrypt'
|
||||
operation_past = 'decrypted'
|
||||
operation_progressive = 'decrypting'
|
||||
key_class = rsa.PrivateKey
|
||||
|
||||
def perform_operation(self, indata, priv_key, cli_args=None):
|
||||
'''Decrypts files.'''
|
||||
|
||||
return rsa.decrypt(indata, priv_key)
|
||||
|
||||
class SignOperation(CryptoOperation):
|
||||
'''Signs a file.'''
|
||||
|
||||
keyname = 'private'
|
||||
usage = 'usage: %%prog [options] private_key hash_method'
|
||||
description = ('Signs a file, outputs the signature. Choose the hash '
|
||||
'method from %s' % ', '.join(HASH_METHODS))
|
||||
operation = 'sign'
|
||||
operation_past = 'signature'
|
||||
operation_progressive = 'Signing'
|
||||
key_class = rsa.PrivateKey
|
||||
expected_cli_args = 2
|
||||
|
||||
output_help = ('Name of the file to write the signature to. Written '
|
||||
'to stdout if this option is not present.')
|
||||
|
||||
def perform_operation(self, indata, priv_key, cli_args):
|
||||
'''Decrypts files.'''
|
||||
|
||||
hash_method = cli_args[1]
|
||||
if hash_method not in HASH_METHODS:
|
||||
raise SystemExit('Invalid hash method, choose one of %s' %
|
||||
', '.join(HASH_METHODS))
|
||||
|
||||
return rsa.sign(indata, priv_key, hash_method)
|
||||
|
||||
class VerifyOperation(CryptoOperation):
|
||||
'''Verify a signature.'''
|
||||
|
||||
keyname = 'public'
|
||||
usage = 'usage: %%prog [options] private_key signature_file'
|
||||
description = ('Verifies a signature, exits with status 0 upon success, '
|
||||
'prints an error message and exits with status 1 upon error.')
|
||||
operation = 'verify'
|
||||
operation_past = 'verified'
|
||||
operation_progressive = 'Verifying'
|
||||
key_class = rsa.PublicKey
|
||||
expected_cli_args = 2
|
||||
has_output = False
|
||||
|
||||
def perform_operation(self, indata, pub_key, cli_args):
|
||||
'''Decrypts files.'''
|
||||
|
||||
signature_file = cli_args[1]
|
||||
|
||||
with open(signature_file, 'rb') as sigfile:
|
||||
signature = sigfile.read()
|
||||
|
||||
try:
|
||||
rsa.verify(indata, signature, pub_key)
|
||||
except rsa.VerificationError:
|
||||
raise SystemExit('Verification failed.')
|
||||
|
||||
print('Verification OK', file=sys.stderr)
|
||||
|
||||
|
||||
class BigfileOperation(CryptoOperation):
|
||||
'''CryptoOperation that doesn't read the entire file into memory.'''
|
||||
|
||||
def __init__(self):
|
||||
CryptoOperation.__init__(self)
|
||||
|
||||
self.file_objects = []
|
||||
|
||||
def __del__(self):
|
||||
'''Closes any open file handles.'''
|
||||
|
||||
for fobj in self.file_objects:
|
||||
fobj.close()
|
||||
|
||||
def __call__(self):
|
||||
'''Runs the program.'''
|
||||
|
||||
(cli, cli_args) = self.parse_cli()
|
||||
|
||||
key = self.read_key(cli_args[0], cli.keyform)
|
||||
|
||||
# Get the file handles
|
||||
infile = self.get_infile(cli.input)
|
||||
outfile = self.get_outfile(cli.output)
|
||||
|
||||
# Call the operation
|
||||
print(self.operation_progressive.title(), file=sys.stderr)
|
||||
self.perform_operation(infile, outfile, key, cli_args)
|
||||
|
||||
def get_infile(self, inname):
|
||||
'''Returns the input file object'''
|
||||
|
||||
if inname:
|
||||
print('Reading input from %s' % inname, file=sys.stderr)
|
||||
fobj = open(inname, 'rb')
|
||||
self.file_objects.append(fobj)
|
||||
else:
|
||||
print('Reading input from stdin', file=sys.stderr)
|
||||
fobj = sys.stdin
|
||||
|
||||
return fobj
|
||||
|
||||
def get_outfile(self, outname):
|
||||
'''Returns the output file object'''
|
||||
|
||||
if outname:
|
||||
print('Will write output to %s' % outname, file=sys.stderr)
|
||||
fobj = open(outname, 'wb')
|
||||
self.file_objects.append(fobj)
|
||||
else:
|
||||
print('Will write output to stdout', file=sys.stderr)
|
||||
fobj = sys.stdout
|
||||
|
||||
return fobj
|
||||
|
||||
class EncryptBigfileOperation(BigfileOperation):
|
||||
'''Encrypts a file to VARBLOCK format.'''
|
||||
|
||||
keyname = 'public'
|
||||
description = ('Encrypts a file to an encrypted VARBLOCK file. The file '
|
||||
'can be larger than the key length, but the output file is only '
|
||||
'compatible with Python-RSA.')
|
||||
operation = 'encrypt'
|
||||
operation_past = 'encrypted'
|
||||
operation_progressive = 'encrypting'
|
||||
|
||||
def perform_operation(self, infile, outfile, pub_key, cli_args=None):
|
||||
'''Encrypts files to VARBLOCK.'''
|
||||
|
||||
return rsa.bigfile.encrypt_bigfile(infile, outfile, pub_key)
|
||||
|
||||
class DecryptBigfileOperation(BigfileOperation):
|
||||
'''Decrypts a file in VARBLOCK format.'''
|
||||
|
||||
keyname = 'private'
|
||||
description = ('Decrypts an encrypted VARBLOCK file that was encrypted '
|
||||
'with pyrsa-encrypt-bigfile')
|
||||
operation = 'decrypt'
|
||||
operation_past = 'decrypted'
|
||||
operation_progressive = 'decrypting'
|
||||
key_class = rsa.PrivateKey
|
||||
|
||||
def perform_operation(self, infile, outfile, priv_key, cli_args=None):
|
||||
'''Decrypts a VARBLOCK file.'''
|
||||
|
||||
return rsa.bigfile.decrypt_bigfile(infile, outfile, priv_key)
|
||||
|
||||
|
||||
encrypt = EncryptOperation()
|
||||
decrypt = DecryptOperation()
|
||||
sign = SignOperation()
|
||||
verify = VerifyOperation()
|
||||
encrypt_bigfile = EncryptBigfileOperation()
|
||||
decrypt_bigfile = DecryptBigfileOperation()
|
||||
|
185
rsa/common.py
185
rsa/common.py
|
@ -1,185 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Common functionality shared by several modules.'''
|
||||
|
||||
|
||||
def bit_size(num):
|
||||
'''
|
||||
Number of bits needed to represent a integer excluding any prefix
|
||||
0 bits.
|
||||
|
||||
As per definition from http://wiki.python.org/moin/BitManipulation and
|
||||
to match the behavior of the Python 3 API.
|
||||
|
||||
Usage::
|
||||
|
||||
>>> bit_size(1023)
|
||||
10
|
||||
>>> bit_size(1024)
|
||||
11
|
||||
>>> bit_size(1025)
|
||||
11
|
||||
|
||||
:param num:
|
||||
Integer value. If num is 0, returns 0. Only the absolute value of the
|
||||
number is considered. Therefore, signed integers will be abs(num)
|
||||
before the number's bit length is determined.
|
||||
:returns:
|
||||
Returns the number of bits in the integer.
|
||||
'''
|
||||
if num == 0:
|
||||
return 0
|
||||
if num < 0:
|
||||
num = -num
|
||||
|
||||
# Make sure this is an int and not a float.
|
||||
num & 1
|
||||
|
||||
hex_num = "%x" % num
|
||||
return ((len(hex_num) - 1) * 4) + {
|
||||
'0':0, '1':1, '2':2, '3':2,
|
||||
'4':3, '5':3, '6':3, '7':3,
|
||||
'8':4, '9':4, 'a':4, 'b':4,
|
||||
'c':4, 'd':4, 'e':4, 'f':4,
|
||||
}[hex_num[0]]
|
||||
|
||||
|
||||
def _bit_size(number):
|
||||
'''
|
||||
Returns the number of bits required to hold a specific long number.
|
||||
'''
|
||||
if number < 0:
|
||||
raise ValueError('Only nonnegative numbers possible: %s' % number)
|
||||
|
||||
if number == 0:
|
||||
return 0
|
||||
|
||||
# This works, even with very large numbers. When using math.log(number, 2),
|
||||
# you'll get rounding errors and it'll fail.
|
||||
bits = 0
|
||||
while number:
|
||||
bits += 1
|
||||
number >>= 1
|
||||
|
||||
return bits
|
||||
|
||||
|
||||
def byte_size(number):
|
||||
'''
|
||||
Returns the number of bytes required to hold a specific long number.
|
||||
|
||||
The number of bytes is rounded up.
|
||||
|
||||
Usage::
|
||||
|
||||
>>> byte_size(1 << 1023)
|
||||
128
|
||||
>>> byte_size((1 << 1024) - 1)
|
||||
128
|
||||
>>> byte_size(1 << 1024)
|
||||
129
|
||||
|
||||
:param number:
|
||||
An unsigned integer
|
||||
:returns:
|
||||
The number of bytes required to hold a specific long number.
|
||||
'''
|
||||
quanta, mod = divmod(bit_size(number), 8)
|
||||
if mod or number == 0:
|
||||
quanta += 1
|
||||
return quanta
|
||||
#return int(math.ceil(bit_size(number) / 8.0))
|
||||
|
||||
|
||||
def extended_gcd(a, b):
|
||||
'''Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb
|
||||
'''
|
||||
# r = gcd(a,b) i = multiplicitive inverse of a mod b
|
||||
# or j = multiplicitive inverse of b mod a
|
||||
# Neg return values for i or j are made positive mod b or a respectively
|
||||
# Iterateive Version is faster and uses much less stack space
|
||||
x = 0
|
||||
y = 1
|
||||
lx = 1
|
||||
ly = 0
|
||||
oa = a #Remember original a/b to remove
|
||||
ob = b #negative values from return results
|
||||
while b != 0:
|
||||
q = a // b
|
||||
(a, b) = (b, a % b)
|
||||
(x, lx) = ((lx - (q * x)),x)
|
||||
(y, ly) = ((ly - (q * y)),y)
|
||||
if (lx < 0): lx += ob #If neg wrap modulo orignal b
|
||||
if (ly < 0): ly += oa #If neg wrap modulo orignal a
|
||||
return (a, lx, ly) #Return only positive values
|
||||
|
||||
|
||||
def inverse(x, n):
|
||||
'''Returns x^-1 (mod n)
|
||||
|
||||
>>> inverse(7, 4)
|
||||
3
|
||||
>>> (inverse(143, 4) * 143) % 4
|
||||
1
|
||||
'''
|
||||
|
||||
(divider, inv, _) = extended_gcd(x, n)
|
||||
|
||||
if divider != 1:
|
||||
raise ValueError("x (%d) and n (%d) are not relatively prime" % (x, n))
|
||||
|
||||
return inv
|
||||
|
||||
|
||||
def crt(a_values, modulo_values):
|
||||
'''Chinese Remainder Theorem.
|
||||
|
||||
Calculates x such that x = a[i] (mod m[i]) for each i.
|
||||
|
||||
:param a_values: the a-values of the above equation
|
||||
:param modulo_values: the m-values of the above equation
|
||||
:returns: x such that x = a[i] (mod m[i]) for each i
|
||||
|
||||
|
||||
>>> crt([2, 3], [3, 5])
|
||||
8
|
||||
|
||||
>>> crt([2, 3, 2], [3, 5, 7])
|
||||
23
|
||||
|
||||
>>> crt([2, 3, 0], [7, 11, 15])
|
||||
135
|
||||
'''
|
||||
|
||||
m = 1
|
||||
x = 0
|
||||
|
||||
for modulo in modulo_values:
|
||||
m *= modulo
|
||||
|
||||
for (m_i, a_i) in zip(modulo_values, a_values):
|
||||
M_i = m // m_i
|
||||
inv = inverse(M_i, m_i)
|
||||
|
||||
x = (x + a_i * M_i * inv) % m
|
||||
|
||||
return x
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
|
58
rsa/core.py
58
rsa/core.py
|
@ -1,58 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Core mathematical operations.
|
||||
|
||||
This is the actual core RSA implementation, which is only defined
|
||||
mathematically on integers.
|
||||
'''
|
||||
|
||||
|
||||
from rsa._compat import is_integer
|
||||
|
||||
def assert_int(var, name):
|
||||
|
||||
if is_integer(var):
|
||||
return
|
||||
|
||||
raise TypeError('%s should be an integer, not %s' % (name, var.__class__))
|
||||
|
||||
def encrypt_int(message, ekey, n):
|
||||
'''Encrypts a message using encryption key 'ekey', working modulo n'''
|
||||
|
||||
assert_int(message, 'message')
|
||||
assert_int(ekey, 'ekey')
|
||||
assert_int(n, 'n')
|
||||
|
||||
if message < 0:
|
||||
raise ValueError('Only non-negative numbers are supported')
|
||||
|
||||
if message > n:
|
||||
raise OverflowError("The message %i is too long for n=%i" % (message, n))
|
||||
|
||||
return pow(message, ekey, n)
|
||||
|
||||
def decrypt_int(cyphertext, dkey, n):
|
||||
'''Decrypts a cypher text using the decryption key 'dkey', working
|
||||
modulo n'''
|
||||
|
||||
assert_int(cyphertext, 'cyphertext')
|
||||
assert_int(dkey, 'dkey')
|
||||
assert_int(n, 'n')
|
||||
|
||||
message = pow(cyphertext, dkey, n)
|
||||
return message
|
||||
|
581
rsa/key.py
581
rsa/key.py
|
@ -1,581 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''RSA key generation code.
|
||||
|
||||
Create new keys with the newkeys() function. It will give you a PublicKey and a
|
||||
PrivateKey object.
|
||||
|
||||
Loading and saving keys requires the pyasn1 module. This module is imported as
|
||||
late as possible, such that other functionality will remain working in absence
|
||||
of pyasn1.
|
||||
|
||||
'''
|
||||
|
||||
import logging
|
||||
from rsa._compat import b
|
||||
|
||||
import rsa.prime
|
||||
import rsa.pem
|
||||
import rsa.common
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
class AbstractKey(object):
|
||||
'''Abstract superclass for private and public keys.'''
|
||||
|
||||
@classmethod
|
||||
def load_pkcs1(cls, keyfile, format='PEM'):
|
||||
r'''Loads a key in PKCS#1 DER or PEM format.
|
||||
|
||||
:param keyfile: contents of a DER- or PEM-encoded file that contains
|
||||
the public key.
|
||||
:param format: the format of the file to load; 'PEM' or 'DER'
|
||||
|
||||
:return: a PublicKey object
|
||||
|
||||
'''
|
||||
|
||||
methods = {
|
||||
'PEM': cls._load_pkcs1_pem,
|
||||
'DER': cls._load_pkcs1_der,
|
||||
}
|
||||
|
||||
if format not in methods:
|
||||
formats = ', '.join(sorted(methods.keys()))
|
||||
raise ValueError('Unsupported format: %r, try one of %s' % (format,
|
||||
formats))
|
||||
|
||||
method = methods[format]
|
||||
return method(keyfile)
|
||||
|
||||
def save_pkcs1(self, format='PEM'):
|
||||
'''Saves the public key in PKCS#1 DER or PEM format.
|
||||
|
||||
:param format: the format to save; 'PEM' or 'DER'
|
||||
:returns: the DER- or PEM-encoded public key.
|
||||
|
||||
'''
|
||||
|
||||
methods = {
|
||||
'PEM': self._save_pkcs1_pem,
|
||||
'DER': self._save_pkcs1_der,
|
||||
}
|
||||
|
||||
if format not in methods:
|
||||
formats = ', '.join(sorted(methods.keys()))
|
||||
raise ValueError('Unsupported format: %r, try one of %s' % (format,
|
||||
formats))
|
||||
|
||||
method = methods[format]
|
||||
return method()
|
||||
|
||||
class PublicKey(AbstractKey):
|
||||
'''Represents a public RSA key.
|
||||
|
||||
This key is also known as the 'encryption key'. It contains the 'n' and 'e'
|
||||
values.
|
||||
|
||||
Supports attributes as well as dictionary-like access. Attribute accesss is
|
||||
faster, though.
|
||||
|
||||
>>> PublicKey(5, 3)
|
||||
PublicKey(5, 3)
|
||||
|
||||
>>> key = PublicKey(5, 3)
|
||||
>>> key.n
|
||||
5
|
||||
>>> key['n']
|
||||
5
|
||||
>>> key.e
|
||||
3
|
||||
>>> key['e']
|
||||
3
|
||||
|
||||
'''
|
||||
|
||||
__slots__ = ('n', 'e')
|
||||
|
||||
def __init__(self, n, e):
|
||||
self.n = n
|
||||
self.e = e
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __repr__(self):
|
||||
return 'PublicKey(%i, %i)' % (self.n, self.e)
|
||||
|
||||
def __eq__(self, other):
|
||||
if other is None:
|
||||
return False
|
||||
|
||||
if not isinstance(other, PublicKey):
|
||||
return False
|
||||
|
||||
return self.n == other.n and self.e == other.e
|
||||
|
||||
def __ne__(self, other):
|
||||
return not (self == other)
|
||||
|
||||
@classmethod
|
||||
def _load_pkcs1_der(cls, keyfile):
|
||||
r'''Loads a key in PKCS#1 DER format.
|
||||
|
||||
@param keyfile: contents of a DER-encoded file that contains the public
|
||||
key.
|
||||
@return: a PublicKey object
|
||||
|
||||
First let's construct a DER encoded key:
|
||||
|
||||
>>> import base64
|
||||
>>> b64der = 'MAwCBQCNGmYtAgMBAAE='
|
||||
>>> der = base64.decodestring(b64der)
|
||||
|
||||
This loads the file:
|
||||
|
||||
>>> PublicKey._load_pkcs1_der(der)
|
||||
PublicKey(2367317549, 65537)
|
||||
|
||||
'''
|
||||
|
||||
from pyasn1.codec.der import decoder
|
||||
(priv, _) = decoder.decode(keyfile)
|
||||
|
||||
# ASN.1 contents of DER encoded public key:
|
||||
#
|
||||
# RSAPublicKey ::= SEQUENCE {
|
||||
# modulus INTEGER, -- n
|
||||
# publicExponent INTEGER, -- e
|
||||
|
||||
as_ints = tuple(int(x) for x in priv)
|
||||
return cls(*as_ints)
|
||||
|
||||
def _save_pkcs1_der(self):
|
||||
'''Saves the public key in PKCS#1 DER format.
|
||||
|
||||
@returns: the DER-encoded public key.
|
||||
'''
|
||||
|
||||
from pyasn1.type import univ, namedtype
|
||||
from pyasn1.codec.der import encoder
|
||||
|
||||
class AsnPubKey(univ.Sequence):
|
||||
componentType = namedtype.NamedTypes(
|
||||
namedtype.NamedType('modulus', univ.Integer()),
|
||||
namedtype.NamedType('publicExponent', univ.Integer()),
|
||||
)
|
||||
|
||||
# Create the ASN object
|
||||
asn_key = AsnPubKey()
|
||||
asn_key.setComponentByName('modulus', self.n)
|
||||
asn_key.setComponentByName('publicExponent', self.e)
|
||||
|
||||
return encoder.encode(asn_key)
|
||||
|
||||
@classmethod
|
||||
def _load_pkcs1_pem(cls, keyfile):
|
||||
'''Loads a PKCS#1 PEM-encoded public key file.
|
||||
|
||||
The contents of the file before the "-----BEGIN RSA PUBLIC KEY-----" and
|
||||
after the "-----END RSA PUBLIC KEY-----" lines is ignored.
|
||||
|
||||
@param keyfile: contents of a PEM-encoded file that contains the public
|
||||
key.
|
||||
@return: a PublicKey object
|
||||
'''
|
||||
|
||||
der = rsa.pem.load_pem(keyfile, 'RSA PUBLIC KEY')
|
||||
return cls._load_pkcs1_der(der)
|
||||
|
||||
def _save_pkcs1_pem(self):
|
||||
'''Saves a PKCS#1 PEM-encoded public key file.
|
||||
|
||||
@return: contents of a PEM-encoded file that contains the public key.
|
||||
'''
|
||||
|
||||
der = self._save_pkcs1_der()
|
||||
return rsa.pem.save_pem(der, 'RSA PUBLIC KEY')
|
||||
|
||||
class PrivateKey(AbstractKey):
|
||||
'''Represents a private RSA key.
|
||||
|
||||
This key is also known as the 'decryption key'. It contains the 'n', 'e',
|
||||
'd', 'p', 'q' and other values.
|
||||
|
||||
Supports attributes as well as dictionary-like access. Attribute accesss is
|
||||
faster, though.
|
||||
|
||||
>>> PrivateKey(3247, 65537, 833, 191, 17)
|
||||
PrivateKey(3247, 65537, 833, 191, 17)
|
||||
|
||||
exp1, exp2 and coef don't have to be given, they will be calculated:
|
||||
|
||||
>>> pk = PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
|
||||
>>> pk.exp1
|
||||
55063
|
||||
>>> pk.exp2
|
||||
10095
|
||||
>>> pk.coef
|
||||
50797
|
||||
|
||||
If you give exp1, exp2 or coef, they will be used as-is:
|
||||
|
||||
>>> pk = PrivateKey(1, 2, 3, 4, 5, 6, 7, 8)
|
||||
>>> pk.exp1
|
||||
6
|
||||
>>> pk.exp2
|
||||
7
|
||||
>>> pk.coef
|
||||
8
|
||||
|
||||
'''
|
||||
|
||||
__slots__ = ('n', 'e', 'd', 'p', 'q', 'exp1', 'exp2', 'coef')
|
||||
|
||||
def __init__(self, n, e, d, p, q, exp1=None, exp2=None, coef=None):
|
||||
self.n = n
|
||||
self.e = e
|
||||
self.d = d
|
||||
self.p = p
|
||||
self.q = q
|
||||
|
||||
# Calculate the other values if they aren't supplied
|
||||
if exp1 is None:
|
||||
self.exp1 = int(d % (p - 1))
|
||||
else:
|
||||
self.exp1 = exp1
|
||||
|
||||
if exp1 is None:
|
||||
self.exp2 = int(d % (q - 1))
|
||||
else:
|
||||
self.exp2 = exp2
|
||||
|
||||
if coef is None:
|
||||
self.coef = rsa.common.inverse(q, p)
|
||||
else:
|
||||
self.coef = coef
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __repr__(self):
|
||||
return 'PrivateKey(%(n)i, %(e)i, %(d)i, %(p)i, %(q)i)' % self
|
||||
|
||||
def __eq__(self, other):
|
||||
if other is None:
|
||||
return False
|
||||
|
||||
if not isinstance(other, PrivateKey):
|
||||
return False
|
||||
|
||||
return (self.n == other.n and
|
||||
self.e == other.e and
|
||||
self.d == other.d and
|
||||
self.p == other.p and
|
||||
self.q == other.q and
|
||||
self.exp1 == other.exp1 and
|
||||
self.exp2 == other.exp2 and
|
||||
self.coef == other.coef)
|
||||
|
||||
def __ne__(self, other):
|
||||
return not (self == other)
|
||||
|
||||
@classmethod
|
||||
def _load_pkcs1_der(cls, keyfile):
|
||||
r'''Loads a key in PKCS#1 DER format.
|
||||
|
||||
@param keyfile: contents of a DER-encoded file that contains the private
|
||||
key.
|
||||
@return: a PrivateKey object
|
||||
|
||||
First let's construct a DER encoded key:
|
||||
|
||||
>>> import base64
|
||||
>>> b64der = 'MC4CAQACBQDeKYlRAgMBAAECBQDHn4npAgMA/icCAwDfxwIDANcXAgInbwIDAMZt'
|
||||
>>> der = base64.decodestring(b64der)
|
||||
|
||||
This loads the file:
|
||||
|
||||
>>> PrivateKey._load_pkcs1_der(der)
|
||||
PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
|
||||
|
||||
'''
|
||||
|
||||
from pyasn1.codec.der import decoder
|
||||
(priv, _) = decoder.decode(keyfile)
|
||||
|
||||
# ASN.1 contents of DER encoded private key:
|
||||
#
|
||||
# RSAPrivateKey ::= SEQUENCE {
|
||||
# version Version,
|
||||
# modulus INTEGER, -- n
|
||||
# publicExponent INTEGER, -- e
|
||||
# privateExponent INTEGER, -- d
|
||||
# prime1 INTEGER, -- p
|
||||
# prime2 INTEGER, -- q
|
||||
# exponent1 INTEGER, -- d mod (p-1)
|
||||
# exponent2 INTEGER, -- d mod (q-1)
|
||||
# coefficient INTEGER, -- (inverse of q) mod p
|
||||
# otherPrimeInfos OtherPrimeInfos OPTIONAL
|
||||
# }
|
||||
|
||||
if priv[0] != 0:
|
||||
raise ValueError('Unable to read this file, version %s != 0' % priv[0])
|
||||
|
||||
as_ints = tuple(int(x) for x in priv[1:9])
|
||||
return cls(*as_ints)
|
||||
|
||||
def _save_pkcs1_der(self):
|
||||
'''Saves the private key in PKCS#1 DER format.
|
||||
|
||||
@returns: the DER-encoded private key.
|
||||
'''
|
||||
|
||||
from pyasn1.type import univ, namedtype
|
||||
from pyasn1.codec.der import encoder
|
||||
|
||||
class AsnPrivKey(univ.Sequence):
|
||||
componentType = namedtype.NamedTypes(
|
||||
namedtype.NamedType('version', univ.Integer()),
|
||||
namedtype.NamedType('modulus', univ.Integer()),
|
||||
namedtype.NamedType('publicExponent', univ.Integer()),
|
||||
namedtype.NamedType('privateExponent', univ.Integer()),
|
||||
namedtype.NamedType('prime1', univ.Integer()),
|
||||
namedtype.NamedType('prime2', univ.Integer()),
|
||||
namedtype.NamedType('exponent1', univ.Integer()),
|
||||
namedtype.NamedType('exponent2', univ.Integer()),
|
||||
namedtype.NamedType('coefficient', univ.Integer()),
|
||||
)
|
||||
|
||||
# Create the ASN object
|
||||
asn_key = AsnPrivKey()
|
||||
asn_key.setComponentByName('version', 0)
|
||||
asn_key.setComponentByName('modulus', self.n)
|
||||
asn_key.setComponentByName('publicExponent', self.e)
|
||||
asn_key.setComponentByName('privateExponent', self.d)
|
||||
asn_key.setComponentByName('prime1', self.p)
|
||||
asn_key.setComponentByName('prime2', self.q)
|
||||
asn_key.setComponentByName('exponent1', self.exp1)
|
||||
asn_key.setComponentByName('exponent2', self.exp2)
|
||||
asn_key.setComponentByName('coefficient', self.coef)
|
||||
|
||||
return encoder.encode(asn_key)
|
||||
|
||||
@classmethod
|
||||
def _load_pkcs1_pem(cls, keyfile):
|
||||
'''Loads a PKCS#1 PEM-encoded private key file.
|
||||
|
||||
The contents of the file before the "-----BEGIN RSA PRIVATE KEY-----" and
|
||||
after the "-----END RSA PRIVATE KEY-----" lines is ignored.
|
||||
|
||||
@param keyfile: contents of a PEM-encoded file that contains the private
|
||||
key.
|
||||
@return: a PrivateKey object
|
||||
'''
|
||||
|
||||
der = rsa.pem.load_pem(keyfile, b('RSA PRIVATE KEY'))
|
||||
return cls._load_pkcs1_der(der)
|
||||
|
||||
def _save_pkcs1_pem(self):
|
||||
'''Saves a PKCS#1 PEM-encoded private key file.
|
||||
|
||||
@return: contents of a PEM-encoded file that contains the private key.
|
||||
'''
|
||||
|
||||
der = self._save_pkcs1_der()
|
||||
return rsa.pem.save_pem(der, b('RSA PRIVATE KEY'))
|
||||
|
||||
def find_p_q(nbits, getprime_func=rsa.prime.getprime, accurate=True):
|
||||
''''Returns a tuple of two different primes of nbits bits each.
|
||||
|
||||
The resulting p * q has exacty 2 * nbits bits, and the returned p and q
|
||||
will not be equal.
|
||||
|
||||
:param nbits: the number of bits in each of p and q.
|
||||
:param getprime_func: the getprime function, defaults to
|
||||
:py:func:`rsa.prime.getprime`.
|
||||
|
||||
*Introduced in Python-RSA 3.1*
|
||||
|
||||
:param accurate: whether to enable accurate mode or not.
|
||||
:returns: (p, q), where p > q
|
||||
|
||||
>>> (p, q) = find_p_q(128)
|
||||
>>> from rsa import common
|
||||
>>> common.bit_size(p * q)
|
||||
256
|
||||
|
||||
When not in accurate mode, the number of bits can be slightly less
|
||||
|
||||
>>> (p, q) = find_p_q(128, accurate=False)
|
||||
>>> from rsa import common
|
||||
>>> common.bit_size(p * q) <= 256
|
||||
True
|
||||
>>> common.bit_size(p * q) > 240
|
||||
True
|
||||
|
||||
'''
|
||||
|
||||
total_bits = nbits * 2
|
||||
|
||||
# Make sure that p and q aren't too close or the factoring programs can
|
||||
# factor n.
|
||||
shift = nbits // 16
|
||||
pbits = nbits + shift
|
||||
qbits = nbits - shift
|
||||
|
||||
# Choose the two initial primes
|
||||
log.debug('find_p_q(%i): Finding p', nbits)
|
||||
p = getprime_func(pbits)
|
||||
log.debug('find_p_q(%i): Finding q', nbits)
|
||||
q = getprime_func(qbits)
|
||||
|
||||
def is_acceptable(p, q):
|
||||
'''Returns True iff p and q are acceptable:
|
||||
|
||||
- p and q differ
|
||||
- (p * q) has the right nr of bits (when accurate=True)
|
||||
'''
|
||||
|
||||
if p == q:
|
||||
return False
|
||||
|
||||
if not accurate:
|
||||
return True
|
||||
|
||||
# Make sure we have just the right amount of bits
|
||||
found_size = rsa.common.bit_size(p * q)
|
||||
return total_bits == found_size
|
||||
|
||||
# Keep choosing other primes until they match our requirements.
|
||||
change_p = False
|
||||
while not is_acceptable(p, q):
|
||||
# Change p on one iteration and q on the other
|
||||
if change_p:
|
||||
p = getprime_func(pbits)
|
||||
else:
|
||||
q = getprime_func(qbits)
|
||||
|
||||
change_p = not change_p
|
||||
|
||||
# We want p > q as described on
|
||||
# http://www.di-mgt.com.au/rsa_alg.html#crt
|
||||
return (max(p, q), min(p, q))
|
||||
|
||||
def calculate_keys(p, q, nbits):
|
||||
'''Calculates an encryption and a decryption key given p and q, and
|
||||
returns them as a tuple (e, d)
|
||||
|
||||
'''
|
||||
|
||||
phi_n = (p - 1) * (q - 1)
|
||||
|
||||
# A very common choice for e is 65537
|
||||
e = 65537
|
||||
|
||||
try:
|
||||
d = rsa.common.inverse(e, phi_n)
|
||||
except ValueError:
|
||||
raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
|
||||
(e, phi_n))
|
||||
|
||||
if (e * d) % phi_n != 1:
|
||||
raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
|
||||
"phi_n (%d)" % (e, d, phi_n))
|
||||
|
||||
return (e, d)
|
||||
|
||||
def gen_keys(nbits, getprime_func, accurate=True):
|
||||
'''Generate RSA keys of nbits bits. Returns (p, q, e, d).
|
||||
|
||||
Note: this can take a long time, depending on the key size.
|
||||
|
||||
:param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
|
||||
``q`` will use ``nbits/2`` bits.
|
||||
:param getprime_func: either :py:func:`rsa.prime.getprime` or a function
|
||||
with similar signature.
|
||||
'''
|
||||
|
||||
(p, q) = find_p_q(nbits // 2, getprime_func, accurate)
|
||||
(e, d) = calculate_keys(p, q, nbits // 2)
|
||||
|
||||
return (p, q, e, d)
|
||||
|
||||
def newkeys(nbits, accurate=True, poolsize=1):
|
||||
'''Generates public and private keys, and returns them as (pub, priv).
|
||||
|
||||
The public key is also known as the 'encryption key', and is a
|
||||
:py:class:`rsa.PublicKey` object. The private key is also known as the
|
||||
'decryption key' and is a :py:class:`rsa.PrivateKey` object.
|
||||
|
||||
:param nbits: the number of bits required to store ``n = p*q``.
|
||||
:param accurate: when True, ``n`` will have exactly the number of bits you
|
||||
asked for. However, this makes key generation much slower. When False,
|
||||
`n`` may have slightly less bits.
|
||||
:param poolsize: the number of processes to use to generate the prime
|
||||
numbers. If set to a number > 1, a parallel algorithm will be used.
|
||||
This requires Python 2.6 or newer.
|
||||
|
||||
:returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`)
|
||||
|
||||
The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires
|
||||
Python 2.6 or newer.
|
||||
|
||||
'''
|
||||
|
||||
if nbits < 16:
|
||||
raise ValueError('Key too small')
|
||||
|
||||
if poolsize < 1:
|
||||
raise ValueError('Pool size (%i) should be >= 1' % poolsize)
|
||||
|
||||
# Determine which getprime function to use
|
||||
if poolsize > 1:
|
||||
from rsa import parallel
|
||||
import functools
|
||||
|
||||
getprime_func = functools.partial(parallel.getprime, poolsize=poolsize)
|
||||
else: getprime_func = rsa.prime.getprime
|
||||
|
||||
# Generate the key components
|
||||
(p, q, e, d) = gen_keys(nbits, getprime_func)
|
||||
|
||||
# Create the key objects
|
||||
n = p * q
|
||||
|
||||
return (
|
||||
PublicKey(n, e),
|
||||
PrivateKey(n, e, d, p, q)
|
||||
)
|
||||
|
||||
__all__ = ['PublicKey', 'PrivateKey', 'newkeys']
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
|
||||
try:
|
||||
for count in range(100):
|
||||
(failures, tests) = doctest.testmod()
|
||||
if failures:
|
||||
break
|
||||
|
||||
if (count and count % 10 == 0) or count == 1:
|
||||
print('%i times' % count)
|
||||
except KeyboardInterrupt:
|
||||
print('Aborted')
|
||||
else:
|
||||
print('Doctests done')
|
|
@ -1,94 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Functions for parallel computation on multiple cores.
|
||||
|
||||
Introduced in Python-RSA 3.1.
|
||||
|
||||
.. note::
|
||||
|
||||
Requires Python 2.6 or newer.
|
||||
|
||||
'''
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import multiprocessing as mp
|
||||
|
||||
import rsa.prime
|
||||
import rsa.randnum
|
||||
|
||||
def _find_prime(nbits, pipe):
|
||||
while True:
|
||||
integer = rsa.randnum.read_random_int(nbits)
|
||||
|
||||
# Make sure it's odd
|
||||
integer |= 1
|
||||
|
||||
# Test for primeness
|
||||
if rsa.prime.is_prime(integer):
|
||||
pipe.send(integer)
|
||||
return
|
||||
|
||||
def getprime(nbits, poolsize):
|
||||
'''Returns a prime number that can be stored in 'nbits' bits.
|
||||
|
||||
Works in multiple threads at the same time.
|
||||
|
||||
>>> p = getprime(128, 3)
|
||||
>>> rsa.prime.is_prime(p-1)
|
||||
False
|
||||
>>> rsa.prime.is_prime(p)
|
||||
True
|
||||
>>> rsa.prime.is_prime(p+1)
|
||||
False
|
||||
|
||||
>>> from rsa import common
|
||||
>>> common.bit_size(p) == 128
|
||||
True
|
||||
|
||||
'''
|
||||
|
||||
(pipe_recv, pipe_send) = mp.Pipe(duplex=False)
|
||||
|
||||
# Create processes
|
||||
procs = [mp.Process(target=_find_prime, args=(nbits, pipe_send))
|
||||
for _ in range(poolsize)]
|
||||
[p.start() for p in procs]
|
||||
|
||||
result = pipe_recv.recv()
|
||||
|
||||
[p.terminate() for p in procs]
|
||||
|
||||
return result
|
||||
|
||||
__all__ = ['getprime']
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('Running doctests 1000x or until failure')
|
||||
import doctest
|
||||
|
||||
for count in range(100):
|
||||
(failures, tests) = doctest.testmod()
|
||||
if failures:
|
||||
break
|
||||
|
||||
if count and count % 10 == 0:
|
||||
print('%i times' % count)
|
||||
|
||||
print('Doctests done')
|
||||
|
BIN
rsa/parallel.pyc
BIN
rsa/parallel.pyc
Binary file not shown.
120
rsa/pem.py
120
rsa/pem.py
|
@ -1,120 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Functions that load and write PEM-encoded files.'''
|
||||
|
||||
import base64
|
||||
from rsa._compat import b, is_bytes
|
||||
|
||||
def _markers(pem_marker):
|
||||
'''
|
||||
Returns the start and end PEM markers
|
||||
'''
|
||||
|
||||
if is_bytes(pem_marker):
|
||||
pem_marker = pem_marker.decode('utf-8')
|
||||
|
||||
return (b('-----BEGIN %s-----' % pem_marker),
|
||||
b('-----END %s-----' % pem_marker))
|
||||
|
||||
def load_pem(contents, pem_marker):
|
||||
'''Loads a PEM file.
|
||||
|
||||
@param contents: the contents of the file to interpret
|
||||
@param pem_marker: the marker of the PEM content, such as 'RSA PRIVATE KEY'
|
||||
when your file has '-----BEGIN RSA PRIVATE KEY-----' and
|
||||
'-----END RSA PRIVATE KEY-----' markers.
|
||||
|
||||
@return the base64-decoded content between the start and end markers.
|
||||
|
||||
@raise ValueError: when the content is invalid, for example when the start
|
||||
marker cannot be found.
|
||||
|
||||
'''
|
||||
|
||||
(pem_start, pem_end) = _markers(pem_marker)
|
||||
|
||||
pem_lines = []
|
||||
in_pem_part = False
|
||||
|
||||
for line in contents.splitlines():
|
||||
line = line.strip()
|
||||
|
||||
# Skip empty lines
|
||||
if not line:
|
||||
continue
|
||||
|
||||
# Handle start marker
|
||||
if line == pem_start:
|
||||
if in_pem_part:
|
||||
raise ValueError('Seen start marker "%s" twice' % pem_start)
|
||||
|
||||
in_pem_part = True
|
||||
continue
|
||||
|
||||
# Skip stuff before first marker
|
||||
if not in_pem_part:
|
||||
continue
|
||||
|
||||
# Handle end marker
|
||||
if in_pem_part and line == pem_end:
|
||||
in_pem_part = False
|
||||
break
|
||||
|
||||
# Load fields
|
||||
if b(':') in line:
|
||||
continue
|
||||
|
||||
pem_lines.append(line)
|
||||
|
||||
# Do some sanity checks
|
||||
if not pem_lines:
|
||||
raise ValueError('No PEM start marker "%s" found' % pem_start)
|
||||
|
||||
if in_pem_part:
|
||||
raise ValueError('No PEM end marker "%s" found' % pem_end)
|
||||
|
||||
# Base64-decode the contents
|
||||
pem = b('').join(pem_lines)
|
||||
return base64.decodestring(pem)
|
||||
|
||||
|
||||
def save_pem(contents, pem_marker):
|
||||
'''Saves a PEM file.
|
||||
|
||||
@param contents: the contents to encode in PEM format
|
||||
@param pem_marker: the marker of the PEM content, such as 'RSA PRIVATE KEY'
|
||||
when your file has '-----BEGIN RSA PRIVATE KEY-----' and
|
||||
'-----END RSA PRIVATE KEY-----' markers.
|
||||
|
||||
@return the base64-encoded content between the start and end markers.
|
||||
|
||||
'''
|
||||
|
||||
(pem_start, pem_end) = _markers(pem_marker)
|
||||
|
||||
b64 = base64.encodestring(contents).replace(b('\n'), b(''))
|
||||
pem_lines = [pem_start]
|
||||
|
||||
for block_start in range(0, len(b64), 64):
|
||||
block = b64[block_start:block_start + 64]
|
||||
pem_lines.append(block)
|
||||
|
||||
pem_lines.append(pem_end)
|
||||
pem_lines.append(b(''))
|
||||
|
||||
return b('\n').join(pem_lines)
|
||||
|
389
rsa/pkcs1.py
389
rsa/pkcs1.py
|
@ -1,389 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Functions for PKCS#1 version 1.5 encryption and signing
|
||||
|
||||
This module implements certain functionality from PKCS#1 version 1.5. For a
|
||||
very clear example, read http://www.di-mgt.com.au/rsa_alg.html#pkcs1schemes
|
||||
|
||||
At least 8 bytes of random padding is used when encrypting a message. This makes
|
||||
these methods much more secure than the ones in the ``rsa`` module.
|
||||
|
||||
WARNING: this module leaks information when decryption or verification fails.
|
||||
The exceptions that are raised contain the Python traceback information, which
|
||||
can be used to deduce where in the process the failure occurred. DO NOT PASS
|
||||
SUCH INFORMATION to your users.
|
||||
'''
|
||||
|
||||
import hashlib
|
||||
import os
|
||||
|
||||
from rsa._compat import b
|
||||
from rsa import common, transform, core, varblock
|
||||
|
||||
# ASN.1 codes that describe the hash algorithm used.
|
||||
HASH_ASN1 = {
|
||||
'MD5': b('\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10'),
|
||||
'SHA-1': b('\x30\x21\x30\x09\x06\x05\x2b\x0e\x03\x02\x1a\x05\x00\x04\x14'),
|
||||
'SHA-256': b('\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20'),
|
||||
'SHA-384': b('\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02\x05\x00\x04\x30'),
|
||||
'SHA-512': b('\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x40'),
|
||||
}
|
||||
|
||||
HASH_METHODS = {
|
||||
'MD5': hashlib.md5,
|
||||
'SHA-1': hashlib.sha1,
|
||||
'SHA-256': hashlib.sha256,
|
||||
'SHA-384': hashlib.sha384,
|
||||
'SHA-512': hashlib.sha512,
|
||||
}
|
||||
|
||||
class CryptoError(Exception):
|
||||
'''Base class for all exceptions in this module.'''
|
||||
|
||||
class DecryptionError(CryptoError):
|
||||
'''Raised when decryption fails.'''
|
||||
|
||||
class VerificationError(CryptoError):
|
||||
'''Raised when verification fails.'''
|
||||
|
||||
def _pad_for_encryption(message, target_length):
|
||||
r'''Pads the message for encryption, returning the padded message.
|
||||
|
||||
:return: 00 02 RANDOM_DATA 00 MESSAGE
|
||||
|
||||
>>> block = _pad_for_encryption('hello', 16)
|
||||
>>> len(block)
|
||||
16
|
||||
>>> block[0:2]
|
||||
'\x00\x02'
|
||||
>>> block[-6:]
|
||||
'\x00hello'
|
||||
|
||||
'''
|
||||
|
||||
max_msglength = target_length - 11
|
||||
msglength = len(message)
|
||||
|
||||
if msglength > max_msglength:
|
||||
raise OverflowError('%i bytes needed for message, but there is only'
|
||||
' space for %i' % (msglength, max_msglength))
|
||||
|
||||
# Get random padding
|
||||
padding = b('')
|
||||
padding_length = target_length - msglength - 3
|
||||
|
||||
# We remove 0-bytes, so we'll end up with less padding than we've asked for,
|
||||
# so keep adding data until we're at the correct length.
|
||||
while len(padding) < padding_length:
|
||||
needed_bytes = padding_length - len(padding)
|
||||
|
||||
# Always read at least 8 bytes more than we need, and trim off the rest
|
||||
# after removing the 0-bytes. This increases the chance of getting
|
||||
# enough bytes, especially when needed_bytes is small
|
||||
new_padding = os.urandom(needed_bytes + 5)
|
||||
new_padding = new_padding.replace(b('\x00'), b(''))
|
||||
padding = padding + new_padding[:needed_bytes]
|
||||
|
||||
assert len(padding) == padding_length
|
||||
|
||||
return b('').join([b('\x00\x02'),
|
||||
padding,
|
||||
b('\x00'),
|
||||
message])
|
||||
|
||||
|
||||
def _pad_for_signing(message, target_length):
|
||||
r'''Pads the message for signing, returning the padded message.
|
||||
|
||||
The padding is always a repetition of FF bytes.
|
||||
|
||||
:return: 00 01 PADDING 00 MESSAGE
|
||||
|
||||
>>> block = _pad_for_signing('hello', 16)
|
||||
>>> len(block)
|
||||
16
|
||||
>>> block[0:2]
|
||||
'\x00\x01'
|
||||
>>> block[-6:]
|
||||
'\x00hello'
|
||||
>>> block[2:-6]
|
||||
'\xff\xff\xff\xff\xff\xff\xff\xff'
|
||||
|
||||
'''
|
||||
|
||||
max_msglength = target_length - 11
|
||||
msglength = len(message)
|
||||
|
||||
if msglength > max_msglength:
|
||||
raise OverflowError('%i bytes needed for message, but there is only'
|
||||
' space for %i' % (msglength, max_msglength))
|
||||
|
||||
padding_length = target_length - msglength - 3
|
||||
|
||||
return b('').join([b('\x00\x01'),
|
||||
padding_length * b('\xff'),
|
||||
b('\x00'),
|
||||
message])
|
||||
|
||||
|
||||
def encrypt(message, pub_key):
|
||||
'''Encrypts the given message using PKCS#1 v1.5
|
||||
|
||||
:param message: the message to encrypt. Must be a byte string no longer than
|
||||
``k-11`` bytes, where ``k`` is the number of bytes needed to encode
|
||||
the ``n`` component of the public key.
|
||||
:param pub_key: the :py:class:`rsa.PublicKey` to encrypt with.
|
||||
:raise OverflowError: when the message is too large to fit in the padded
|
||||
block.
|
||||
|
||||
>>> from rsa import key, common
|
||||
>>> (pub_key, priv_key) = key.newkeys(256)
|
||||
>>> message = 'hello'
|
||||
>>> crypto = encrypt(message, pub_key)
|
||||
|
||||
The crypto text should be just as long as the public key 'n' component:
|
||||
|
||||
>>> len(crypto) == common.byte_size(pub_key.n)
|
||||
True
|
||||
|
||||
'''
|
||||
|
||||
keylength = common.byte_size(pub_key.n)
|
||||
padded = _pad_for_encryption(message, keylength)
|
||||
|
||||
payload = transform.bytes2int(padded)
|
||||
encrypted = core.encrypt_int(payload, pub_key.e, pub_key.n)
|
||||
block = transform.int2bytes(encrypted, keylength)
|
||||
|
||||
return block
|
||||
|
||||
def decrypt(crypto, priv_key):
|
||||
r'''Decrypts the given message using PKCS#1 v1.5
|
||||
|
||||
The decryption is considered 'failed' when the resulting cleartext doesn't
|
||||
start with the bytes 00 02, or when the 00 byte between the padding and
|
||||
the message cannot be found.
|
||||
|
||||
:param crypto: the crypto text as returned by :py:func:`rsa.encrypt`
|
||||
:param priv_key: the :py:class:`rsa.PrivateKey` to decrypt with.
|
||||
:raise DecryptionError: when the decryption fails. No details are given as
|
||||
to why the code thinks the decryption fails, as this would leak
|
||||
information about the private key.
|
||||
|
||||
|
||||
>>> import rsa
|
||||
>>> (pub_key, priv_key) = rsa.newkeys(256)
|
||||
|
||||
It works with strings:
|
||||
|
||||
>>> crypto = encrypt('hello', pub_key)
|
||||
>>> decrypt(crypto, priv_key)
|
||||
'hello'
|
||||
|
||||
And with binary data:
|
||||
|
||||
>>> crypto = encrypt('\x00\x00\x00\x00\x01', pub_key)
|
||||
>>> decrypt(crypto, priv_key)
|
||||
'\x00\x00\x00\x00\x01'
|
||||
|
||||
Altering the encrypted information will *likely* cause a
|
||||
:py:class:`rsa.pkcs1.DecryptionError`. If you want to be *sure*, use
|
||||
:py:func:`rsa.sign`.
|
||||
|
||||
|
||||
.. warning::
|
||||
|
||||
Never display the stack trace of a
|
||||
:py:class:`rsa.pkcs1.DecryptionError` exception. It shows where in the
|
||||
code the exception occurred, and thus leaks information about the key.
|
||||
It's only a tiny bit of information, but every bit makes cracking the
|
||||
keys easier.
|
||||
|
||||
>>> crypto = encrypt('hello', pub_key)
|
||||
>>> crypto = crypto[0:5] + 'X' + crypto[6:] # change a byte
|
||||
>>> decrypt(crypto, priv_key)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
DecryptionError: Decryption failed
|
||||
|
||||
'''
|
||||
|
||||
blocksize = common.byte_size(priv_key.n)
|
||||
encrypted = transform.bytes2int(crypto)
|
||||
decrypted = core.decrypt_int(encrypted, priv_key.d, priv_key.n)
|
||||
cleartext = transform.int2bytes(decrypted, blocksize)
|
||||
|
||||
# If we can't find the cleartext marker, decryption failed.
|
||||
if cleartext[0:2] != b('\x00\x02'):
|
||||
raise DecryptionError('Decryption failed')
|
||||
|
||||
# Find the 00 separator between the padding and the message
|
||||
try:
|
||||
sep_idx = cleartext.index(b('\x00'), 2)
|
||||
except ValueError:
|
||||
raise DecryptionError('Decryption failed')
|
||||
|
||||
return cleartext[sep_idx+1:]
|
||||
|
||||
def sign(message, priv_key, hash):
|
||||
'''Signs the message with the private key.
|
||||
|
||||
Hashes the message, then signs the hash with the given key. This is known
|
||||
as a "detached signature", because the message itself isn't altered.
|
||||
|
||||
:param message: the message to sign. Can be an 8-bit string or a file-like
|
||||
object. If ``message`` has a ``read()`` method, it is assumed to be a
|
||||
file-like object.
|
||||
:param priv_key: the :py:class:`rsa.PrivateKey` to sign with
|
||||
:param hash: the hash method used on the message. Use 'MD5', 'SHA-1',
|
||||
'SHA-256', 'SHA-384' or 'SHA-512'.
|
||||
:return: a message signature block.
|
||||
:raise OverflowError: if the private key is too small to contain the
|
||||
requested hash.
|
||||
|
||||
'''
|
||||
|
||||
# Get the ASN1 code for this hash method
|
||||
if hash not in HASH_ASN1:
|
||||
raise ValueError('Invalid hash method: %s' % hash)
|
||||
asn1code = HASH_ASN1[hash]
|
||||
|
||||
# Calculate the hash
|
||||
hash = _hash(message, hash)
|
||||
|
||||
# Encrypt the hash with the private key
|
||||
cleartext = asn1code + hash
|
||||
keylength = common.byte_size(priv_key.n)
|
||||
padded = _pad_for_signing(cleartext, keylength)
|
||||
|
||||
payload = transform.bytes2int(padded)
|
||||
encrypted = core.encrypt_int(payload, priv_key.d, priv_key.n)
|
||||
block = transform.int2bytes(encrypted, keylength)
|
||||
|
||||
return block
|
||||
|
||||
def verify(message, signature, pub_key):
|
||||
'''Verifies that the signature matches the message.
|
||||
|
||||
The hash method is detected automatically from the signature.
|
||||
|
||||
:param message: the signed message. Can be an 8-bit string or a file-like
|
||||
object. If ``message`` has a ``read()`` method, it is assumed to be a
|
||||
file-like object.
|
||||
:param signature: the signature block, as created with :py:func:`rsa.sign`.
|
||||
:param pub_key: the :py:class:`rsa.PublicKey` of the person signing the message.
|
||||
:raise VerificationError: when the signature doesn't match the message.
|
||||
|
||||
.. warning::
|
||||
|
||||
Never display the stack trace of a
|
||||
:py:class:`rsa.pkcs1.VerificationError` exception. It shows where in
|
||||
the code the exception occurred, and thus leaks information about the
|
||||
key. It's only a tiny bit of information, but every bit makes cracking
|
||||
the keys easier.
|
||||
|
||||
'''
|
||||
|
||||
blocksize = common.byte_size(pub_key.n)
|
||||
encrypted = transform.bytes2int(signature)
|
||||
decrypted = core.decrypt_int(encrypted, pub_key.e, pub_key.n)
|
||||
clearsig = transform.int2bytes(decrypted, blocksize)
|
||||
|
||||
# If we can't find the signature marker, verification failed.
|
||||
if clearsig[0:2] != b('\x00\x01'):
|
||||
raise VerificationError('Verification failed')
|
||||
|
||||
# Find the 00 separator between the padding and the payload
|
||||
try:
|
||||
sep_idx = clearsig.index(b('\x00'), 2)
|
||||
except ValueError:
|
||||
raise VerificationError('Verification failed')
|
||||
|
||||
# Get the hash and the hash method
|
||||
(method_name, signature_hash) = _find_method_hash(clearsig[sep_idx+1:])
|
||||
message_hash = _hash(message, method_name)
|
||||
|
||||
# Compare the real hash to the hash in the signature
|
||||
if message_hash != signature_hash:
|
||||
raise VerificationError('Verification failed')
|
||||
|
||||
def _hash(message, method_name):
|
||||
'''Returns the message digest.
|
||||
|
||||
:param message: the signed message. Can be an 8-bit string or a file-like
|
||||
object. If ``message`` has a ``read()`` method, it is assumed to be a
|
||||
file-like object.
|
||||
:param method_name: the hash method, must be a key of
|
||||
:py:const:`HASH_METHODS`.
|
||||
|
||||
'''
|
||||
|
||||
if method_name not in HASH_METHODS:
|
||||
raise ValueError('Invalid hash method: %s' % method_name)
|
||||
|
||||
method = HASH_METHODS[method_name]
|
||||
hasher = method()
|
||||
|
||||
if hasattr(message, 'read') and hasattr(message.read, '__call__'):
|
||||
# read as 1K blocks
|
||||
for block in varblock.yield_fixedblocks(message, 1024):
|
||||
hasher.update(block)
|
||||
else:
|
||||
# hash the message object itself.
|
||||
hasher.update(message)
|
||||
|
||||
return hasher.digest()
|
||||
|
||||
|
||||
def _find_method_hash(method_hash):
|
||||
'''Finds the hash method and the hash itself.
|
||||
|
||||
:param method_hash: ASN1 code for the hash method concatenated with the
|
||||
hash itself.
|
||||
|
||||
:return: tuple (method, hash) where ``method`` is the used hash method, and
|
||||
``hash`` is the hash itself.
|
||||
|
||||
:raise VerificationFailed: when the hash method cannot be found
|
||||
|
||||
'''
|
||||
|
||||
for (hashname, asn1code) in HASH_ASN1.items():
|
||||
if not method_hash.startswith(asn1code):
|
||||
continue
|
||||
|
||||
return (hashname, method_hash[len(asn1code):])
|
||||
|
||||
raise VerificationError('Verification failed')
|
||||
|
||||
|
||||
__all__ = ['encrypt', 'decrypt', 'sign', 'verify',
|
||||
'DecryptionError', 'VerificationError', 'CryptoError']
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('Running doctests 1000x or until failure')
|
||||
import doctest
|
||||
|
||||
for count in range(1000):
|
||||
(failures, tests) = doctest.testmod()
|
||||
if failures:
|
||||
break
|
||||
|
||||
if count and count % 100 == 0:
|
||||
print('%i times' % count)
|
||||
|
||||
print('Doctests done')
|
166
rsa/prime.py
166
rsa/prime.py
|
@ -1,166 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Numerical functions related to primes.
|
||||
|
||||
Implementation based on the book Algorithm Design by Michael T. Goodrich and
|
||||
Roberto Tamassia, 2002.
|
||||
'''
|
||||
|
||||
__all__ = [ 'getprime', 'are_relatively_prime']
|
||||
|
||||
import rsa.randnum
|
||||
|
||||
def gcd(p, q):
|
||||
'''Returns the greatest common divisor of p and q
|
||||
|
||||
>>> gcd(48, 180)
|
||||
12
|
||||
'''
|
||||
|
||||
while q != 0:
|
||||
if p < q: (p,q) = (q,p)
|
||||
(p,q) = (q, p % q)
|
||||
return p
|
||||
|
||||
|
||||
def jacobi(a, b):
|
||||
'''Calculates the value of the Jacobi symbol (a/b) where both a and b are
|
||||
positive integers, and b is odd
|
||||
|
||||
:returns: -1, 0 or 1
|
||||
'''
|
||||
|
||||
assert a > 0
|
||||
assert b > 0
|
||||
|
||||
if a == 0: return 0
|
||||
result = 1
|
||||
while a > 1:
|
||||
if a & 1:
|
||||
if ((a-1)*(b-1) >> 2) & 1:
|
||||
result = -result
|
||||
a, b = b % a, a
|
||||
else:
|
||||
if (((b * b) - 1) >> 3) & 1:
|
||||
result = -result
|
||||
a >>= 1
|
||||
if a == 0: return 0
|
||||
return result
|
||||
|
||||
def jacobi_witness(x, n):
|
||||
'''Returns False if n is an Euler pseudo-prime with base x, and
|
||||
True otherwise.
|
||||
'''
|
||||
|
||||
j = jacobi(x, n) % n
|
||||
|
||||
f = pow(x, n >> 1, n)
|
||||
|
||||
if j == f: return False
|
||||
return True
|
||||
|
||||
def randomized_primality_testing(n, k):
|
||||
'''Calculates whether n is composite (which is always correct) or
|
||||
prime (which is incorrect with error probability 2**-k)
|
||||
|
||||
Returns False if the number is composite, and True if it's
|
||||
probably prime.
|
||||
'''
|
||||
|
||||
# 50% of Jacobi-witnesses can report compositness of non-prime numbers
|
||||
|
||||
# The implemented algorithm using the Jacobi witness function has error
|
||||
# probability q <= 0.5, according to Goodrich et. al
|
||||
#
|
||||
# q = 0.5
|
||||
# t = int(math.ceil(k / log(1 / q, 2)))
|
||||
# So t = k / log(2, 2) = k / 1 = k
|
||||
# this means we can use range(k) rather than range(t)
|
||||
|
||||
for _ in range(k):
|
||||
x = rsa.randnum.randint(n-1)
|
||||
if jacobi_witness(x, n): return False
|
||||
|
||||
return True
|
||||
|
||||
def is_prime(number):
|
||||
'''Returns True if the number is prime, and False otherwise.
|
||||
|
||||
>>> is_prime(42)
|
||||
False
|
||||
>>> is_prime(41)
|
||||
True
|
||||
'''
|
||||
|
||||
return randomized_primality_testing(number, 6)
|
||||
|
||||
def getprime(nbits):
|
||||
'''Returns a prime number that can be stored in 'nbits' bits.
|
||||
|
||||
>>> p = getprime(128)
|
||||
>>> is_prime(p-1)
|
||||
False
|
||||
>>> is_prime(p)
|
||||
True
|
||||
>>> is_prime(p+1)
|
||||
False
|
||||
|
||||
>>> from rsa import common
|
||||
>>> common.bit_size(p) == 128
|
||||
True
|
||||
|
||||
'''
|
||||
|
||||
while True:
|
||||
integer = rsa.randnum.read_random_int(nbits)
|
||||
|
||||
# Make sure it's odd
|
||||
integer |= 1
|
||||
|
||||
# Test for primeness
|
||||
if is_prime(integer):
|
||||
return integer
|
||||
|
||||
# Retry if not prime
|
||||
|
||||
|
||||
def are_relatively_prime(a, b):
|
||||
'''Returns True if a and b are relatively prime, and False if they
|
||||
are not.
|
||||
|
||||
>>> are_relatively_prime(2, 3)
|
||||
1
|
||||
>>> are_relatively_prime(2, 4)
|
||||
0
|
||||
'''
|
||||
|
||||
d = gcd(a, b)
|
||||
return (d == 1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('Running doctests 1000x or until failure')
|
||||
import doctest
|
||||
|
||||
for count in range(1000):
|
||||
(failures, tests) = doctest.testmod()
|
||||
if failures:
|
||||
break
|
||||
|
||||
if count and count % 100 == 0:
|
||||
print('%i times' % count)
|
||||
|
||||
print('Doctests done')
|
|
@ -1,85 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Functions for generating random numbers.'''
|
||||
|
||||
# Source inspired by code by Yesudeep Mangalapilly <yesudeep@gmail.com>
|
||||
|
||||
import os
|
||||
|
||||
from rsa import common, transform
|
||||
from rsa._compat import byte
|
||||
|
||||
def read_random_bits(nbits):
|
||||
'''Reads 'nbits' random bits.
|
||||
|
||||
If nbits isn't a whole number of bytes, an extra byte will be appended with
|
||||
only the lower bits set.
|
||||
'''
|
||||
|
||||
nbytes, rbits = divmod(nbits, 8)
|
||||
|
||||
# Get the random bytes
|
||||
randomdata = os.urandom(nbytes)
|
||||
|
||||
# Add the remaining random bits
|
||||
if rbits > 0:
|
||||
randomvalue = ord(os.urandom(1))
|
||||
randomvalue >>= (8 - rbits)
|
||||
randomdata = byte(randomvalue) + randomdata
|
||||
|
||||
return randomdata
|
||||
|
||||
|
||||
def read_random_int(nbits):
|
||||
'''Reads a random integer of approximately nbits bits.
|
||||
'''
|
||||
|
||||
randomdata = read_random_bits(nbits)
|
||||
value = transform.bytes2int(randomdata)
|
||||
|
||||
# Ensure that the number is large enough to just fill out the required
|
||||
# number of bits.
|
||||
value |= 1 << (nbits - 1)
|
||||
|
||||
return value
|
||||
|
||||
def randint(maxvalue):
|
||||
'''Returns a random integer x with 1 <= x <= maxvalue
|
||||
|
||||
May take a very long time in specific situations. If maxvalue needs N bits
|
||||
to store, the closer maxvalue is to (2 ** N) - 1, the faster this function
|
||||
is.
|
||||
'''
|
||||
|
||||
bit_size = common.bit_size(maxvalue)
|
||||
|
||||
tries = 0
|
||||
while True:
|
||||
value = read_random_int(bit_size)
|
||||
if value <= maxvalue:
|
||||
break
|
||||
|
||||
if tries and tries % 10 == 0:
|
||||
# After a lot of tries to get the right number of bits but still
|
||||
# smaller than maxvalue, decrease the number of bits by 1. That'll
|
||||
# dramatically increase the chances to get a large enough number.
|
||||
bit_size -= 1
|
||||
tries += 1
|
||||
|
||||
return value
|
||||
|
||||
|
220
rsa/transform.py
220
rsa/transform.py
|
@ -1,220 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Data transformation functions.
|
||||
|
||||
From bytes to a number, number to bytes, etc.
|
||||
'''
|
||||
|
||||
from __future__ import absolute_import
|
||||
|
||||
try:
|
||||
# We'll use psyco if available on 32-bit architectures to speed up code.
|
||||
# Using psyco (if available) cuts down the execution time on Python 2.5
|
||||
# at least by half.
|
||||
import psyco
|
||||
psyco.full()
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
import binascii
|
||||
from struct import pack
|
||||
from rsa import common
|
||||
from rsa._compat import is_integer, b, byte, get_word_alignment, ZERO_BYTE, EMPTY_BYTE
|
||||
|
||||
|
||||
def bytes2int(raw_bytes):
|
||||
r'''Converts a list of bytes or an 8-bit string to an integer.
|
||||
|
||||
When using unicode strings, encode it to some encoding like UTF8 first.
|
||||
|
||||
>>> (((128 * 256) + 64) * 256) + 15
|
||||
8405007
|
||||
>>> bytes2int('\x80@\x0f')
|
||||
8405007
|
||||
|
||||
'''
|
||||
|
||||
return int(binascii.hexlify(raw_bytes), 16)
|
||||
|
||||
|
||||
def _int2bytes(number, block_size=None):
|
||||
r'''Converts a number to a string of bytes.
|
||||
|
||||
Usage::
|
||||
|
||||
>>> _int2bytes(123456789)
|
||||
'\x07[\xcd\x15'
|
||||
>>> bytes2int(_int2bytes(123456789))
|
||||
123456789
|
||||
|
||||
>>> _int2bytes(123456789, 6)
|
||||
'\x00\x00\x07[\xcd\x15'
|
||||
>>> bytes2int(_int2bytes(123456789, 128))
|
||||
123456789
|
||||
|
||||
>>> _int2bytes(123456789, 3)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
OverflowError: Needed 4 bytes for number, but block size is 3
|
||||
|
||||
@param number: the number to convert
|
||||
@param block_size: the number of bytes to output. If the number encoded to
|
||||
bytes is less than this, the block will be zero-padded. When not given,
|
||||
the returned block is not padded.
|
||||
|
||||
@throws OverflowError when block_size is given and the number takes up more
|
||||
bytes than fit into the block.
|
||||
'''
|
||||
# Type checking
|
||||
if not is_integer(number):
|
||||
raise TypeError("You must pass an integer for 'number', not %s" %
|
||||
number.__class__)
|
||||
|
||||
if number < 0:
|
||||
raise ValueError('Negative numbers cannot be used: %i' % number)
|
||||
|
||||
# Do some bounds checking
|
||||
if number == 0:
|
||||
needed_bytes = 1
|
||||
raw_bytes = [ZERO_BYTE]
|
||||
else:
|
||||
needed_bytes = common.byte_size(number)
|
||||
raw_bytes = []
|
||||
|
||||
# You cannot compare None > 0 in Python 3x. It will fail with a TypeError.
|
||||
if block_size and block_size > 0:
|
||||
if needed_bytes > block_size:
|
||||
raise OverflowError('Needed %i bytes for number, but block size '
|
||||
'is %i' % (needed_bytes, block_size))
|
||||
|
||||
# Convert the number to bytes.
|
||||
while number > 0:
|
||||
raw_bytes.insert(0, byte(number & 0xFF))
|
||||
number >>= 8
|
||||
|
||||
# Pad with zeroes to fill the block
|
||||
if block_size and block_size > 0:
|
||||
padding = (block_size - needed_bytes) * ZERO_BYTE
|
||||
else:
|
||||
padding = EMPTY_BYTE
|
||||
|
||||
return padding + EMPTY_BYTE.join(raw_bytes)
|
||||
|
||||
|
||||
def bytes_leading(raw_bytes, needle=ZERO_BYTE):
|
||||
'''
|
||||
Finds the number of prefixed byte occurrences in the haystack.
|
||||
|
||||
Useful when you want to deal with padding.
|
||||
|
||||
:param raw_bytes:
|
||||
Raw bytes.
|
||||
:param needle:
|
||||
The byte to count. Default \000.
|
||||
:returns:
|
||||
The number of leading needle bytes.
|
||||
'''
|
||||
leading = 0
|
||||
# Indexing keeps compatibility between Python 2.x and Python 3.x
|
||||
_byte = needle[0]
|
||||
for x in raw_bytes:
|
||||
if x == _byte:
|
||||
leading += 1
|
||||
else:
|
||||
break
|
||||
return leading
|
||||
|
||||
|
||||
def int2bytes(number, fill_size=None, chunk_size=None, overflow=False):
|
||||
'''
|
||||
Convert an unsigned integer to bytes (base-256 representation)::
|
||||
|
||||
Does not preserve leading zeros if you don't specify a chunk size or
|
||||
fill size.
|
||||
|
||||
.. NOTE:
|
||||
You must not specify both fill_size and chunk_size. Only one
|
||||
of them is allowed.
|
||||
|
||||
:param number:
|
||||
Integer value
|
||||
:param fill_size:
|
||||
If the optional fill size is given the length of the resulting
|
||||
byte string is expected to be the fill size and will be padded
|
||||
with prefix zero bytes to satisfy that length.
|
||||
:param chunk_size:
|
||||
If optional chunk size is given and greater than zero, pad the front of
|
||||
the byte string with binary zeros so that the length is a multiple of
|
||||
``chunk_size``.
|
||||
:param overflow:
|
||||
``False`` (default). If this is ``True``, no ``OverflowError``
|
||||
will be raised when the fill_size is shorter than the length
|
||||
of the generated byte sequence. Instead the byte sequence will
|
||||
be returned as is.
|
||||
:returns:
|
||||
Raw bytes (base-256 representation).
|
||||
:raises:
|
||||
``OverflowError`` when fill_size is given and the number takes up more
|
||||
bytes than fit into the block. This requires the ``overflow``
|
||||
argument to this function to be set to ``False`` otherwise, no
|
||||
error will be raised.
|
||||
'''
|
||||
if number < 0:
|
||||
raise ValueError("Number must be an unsigned integer: %d" % number)
|
||||
|
||||
if fill_size and chunk_size:
|
||||
raise ValueError("You can either fill or pad chunks, but not both")
|
||||
|
||||
# Ensure these are integers.
|
||||
number & 1
|
||||
|
||||
raw_bytes = b('')
|
||||
|
||||
# Pack the integer one machine word at a time into bytes.
|
||||
num = number
|
||||
word_bits, _, max_uint, pack_type = get_word_alignment(num)
|
||||
pack_format = ">%s" % pack_type
|
||||
while num > 0:
|
||||
raw_bytes = pack(pack_format, num & max_uint) + raw_bytes
|
||||
num >>= word_bits
|
||||
# Obtain the index of the first non-zero byte.
|
||||
zero_leading = bytes_leading(raw_bytes)
|
||||
if number == 0:
|
||||
raw_bytes = ZERO_BYTE
|
||||
# De-padding.
|
||||
raw_bytes = raw_bytes[zero_leading:]
|
||||
|
||||
length = len(raw_bytes)
|
||||
if fill_size and fill_size > 0:
|
||||
if not overflow and length > fill_size:
|
||||
raise OverflowError(
|
||||
"Need %d bytes for number, but fill size is %d" %
|
||||
(length, fill_size)
|
||||
)
|
||||
raw_bytes = raw_bytes.rjust(fill_size, ZERO_BYTE)
|
||||
elif chunk_size and chunk_size > 0:
|
||||
remainder = length % chunk_size
|
||||
if remainder:
|
||||
padding_size = chunk_size - remainder
|
||||
raw_bytes = raw_bytes.rjust(length + padding_size, ZERO_BYTE)
|
||||
return raw_bytes
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
|
79
rsa/util.py
79
rsa/util.py
|
@ -1,79 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''Utility functions.'''
|
||||
|
||||
from __future__ import with_statement
|
||||
|
||||
import sys
|
||||
from optparse import OptionParser
|
||||
|
||||
import rsa.key
|
||||
|
||||
def private_to_public():
|
||||
'''Reads a private key and outputs the corresponding public key.'''
|
||||
|
||||
# Parse the CLI options
|
||||
parser = OptionParser(usage='usage: %prog [options]',
|
||||
description='Reads a private key and outputs the '
|
||||
'corresponding public key. Both private and public keys use '
|
||||
'the format described in PKCS#1 v1.5')
|
||||
|
||||
parser.add_option('-i', '--input', dest='infilename', type='string',
|
||||
help='Input filename. Reads from stdin if not specified')
|
||||
parser.add_option('-o', '--output', dest='outfilename', type='string',
|
||||
help='Output filename. Writes to stdout of not specified')
|
||||
|
||||
parser.add_option('--inform', dest='inform',
|
||||
help='key format of input - default PEM',
|
||||
choices=('PEM', 'DER'), default='PEM')
|
||||
|
||||
parser.add_option('--outform', dest='outform',
|
||||
help='key format of output - default PEM',
|
||||
choices=('PEM', 'DER'), default='PEM')
|
||||
|
||||
(cli, cli_args) = parser.parse_args(sys.argv)
|
||||
|
||||
# Read the input data
|
||||
if cli.infilename:
|
||||
print >>sys.stderr, 'Reading private key from %s in %s format' % \
|
||||
(cli.infilename, cli.inform)
|
||||
with open(cli.infilename) as infile:
|
||||
in_data = infile.read()
|
||||
else:
|
||||
print >>sys.stderr, 'Reading private key from stdin in %s format' % \
|
||||
cli.inform
|
||||
in_data = sys.stdin.read()
|
||||
|
||||
|
||||
# Take the public fields and create a public key
|
||||
priv_key = rsa.key.PrivateKey.load_pkcs1(in_data, cli.inform)
|
||||
pub_key = rsa.key.PublicKey(priv_key.n, priv_key.e)
|
||||
|
||||
# Save to the output file
|
||||
out_data = pub_key.save_pkcs1(cli.outform)
|
||||
|
||||
if cli.outfilename:
|
||||
print >>sys.stderr, 'Writing public key to %s in %s format' % \
|
||||
(cli.outfilename, cli.outform)
|
||||
with open(cli.outfilename, 'w') as outfile:
|
||||
outfile.write(out_data)
|
||||
else:
|
||||
print >>sys.stderr, 'Writing public key to stdout in %s format' % \
|
||||
cli.outform
|
||||
sys.stdout.write(out_data)
|
||||
|
||||
|
155
rsa/varblock.py
155
rsa/varblock.py
|
@ -1,155 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
'''VARBLOCK file support
|
||||
|
||||
The VARBLOCK file format is as follows, where || denotes byte concatenation:
|
||||
|
||||
FILE := VERSION || BLOCK || BLOCK ...
|
||||
|
||||
BLOCK := LENGTH || DATA
|
||||
|
||||
LENGTH := varint-encoded length of the subsequent data. Varint comes from
|
||||
Google Protobuf, and encodes an integer into a variable number of bytes.
|
||||
Each byte uses the 7 lowest bits to encode the value. The highest bit set
|
||||
to 1 indicates the next byte is also part of the varint. The last byte will
|
||||
have this bit set to 0.
|
||||
|
||||
This file format is called the VARBLOCK format, in line with the varint format
|
||||
used to denote the block sizes.
|
||||
|
||||
'''
|
||||
|
||||
from rsa._compat import byte, b
|
||||
|
||||
|
||||
ZERO_BYTE = b('\x00')
|
||||
VARBLOCK_VERSION = 1
|
||||
|
||||
def read_varint(infile):
|
||||
'''Reads a varint from the file.
|
||||
|
||||
When the first byte to be read indicates EOF, (0, 0) is returned. When an
|
||||
EOF occurs when at least one byte has been read, an EOFError exception is
|
||||
raised.
|
||||
|
||||
@param infile: the file-like object to read from. It should have a read()
|
||||
method.
|
||||
@returns (varint, length), the read varint and the number of read bytes.
|
||||
'''
|
||||
|
||||
varint = 0
|
||||
read_bytes = 0
|
||||
|
||||
while True:
|
||||
char = infile.read(1)
|
||||
if len(char) == 0:
|
||||
if read_bytes == 0:
|
||||
return (0, 0)
|
||||
raise EOFError('EOF while reading varint, value is %i so far' %
|
||||
varint)
|
||||
|
||||
byte = ord(char)
|
||||
varint += (byte & 0x7F) << (7 * read_bytes)
|
||||
|
||||
read_bytes += 1
|
||||
|
||||
if not byte & 0x80:
|
||||
return (varint, read_bytes)
|
||||
|
||||
|
||||
def write_varint(outfile, value):
|
||||
'''Writes a varint to a file.
|
||||
|
||||
@param outfile: the file-like object to write to. It should have a write()
|
||||
method.
|
||||
@returns the number of written bytes.
|
||||
'''
|
||||
|
||||
# there is a big difference between 'write the value 0' (this case) and
|
||||
# 'there is nothing left to write' (the false-case of the while loop)
|
||||
|
||||
if value == 0:
|
||||
outfile.write(ZERO_BYTE)
|
||||
return 1
|
||||
|
||||
written_bytes = 0
|
||||
while value > 0:
|
||||
to_write = value & 0x7f
|
||||
value = value >> 7
|
||||
|
||||
if value > 0:
|
||||
to_write |= 0x80
|
||||
|
||||
outfile.write(byte(to_write))
|
||||
written_bytes += 1
|
||||
|
||||
return written_bytes
|
||||
|
||||
|
||||
def yield_varblocks(infile):
|
||||
'''Generator, yields each block in the input file.
|
||||
|
||||
@param infile: file to read, is expected to have the VARBLOCK format as
|
||||
described in the module's docstring.
|
||||
@yields the contents of each block.
|
||||
'''
|
||||
|
||||
# Check the version number
|
||||
first_char = infile.read(1)
|
||||
if len(first_char) == 0:
|
||||
raise EOFError('Unable to read VARBLOCK version number')
|
||||
|
||||
version = ord(first_char)
|
||||
if version != VARBLOCK_VERSION:
|
||||
raise ValueError('VARBLOCK version %i not supported' % version)
|
||||
|
||||
while True:
|
||||
(block_size, read_bytes) = read_varint(infile)
|
||||
|
||||
# EOF at block boundary, that's fine.
|
||||
if read_bytes == 0 and block_size == 0:
|
||||
break
|
||||
|
||||
block = infile.read(block_size)
|
||||
|
||||
read_size = len(block)
|
||||
if read_size != block_size:
|
||||
raise EOFError('Block size is %i, but could read only %i bytes' %
|
||||
(block_size, read_size))
|
||||
|
||||
yield block
|
||||
|
||||
|
||||
def yield_fixedblocks(infile, blocksize):
|
||||
'''Generator, yields each block of ``blocksize`` bytes in the input file.
|
||||
|
||||
:param infile: file to read and separate in blocks.
|
||||
:returns: a generator that yields the contents of each block
|
||||
'''
|
||||
|
||||
while True:
|
||||
block = infile.read(blocksize)
|
||||
|
||||
read_bytes = len(block)
|
||||
if read_bytes == 0:
|
||||
break
|
||||
|
||||
yield block
|
||||
|
||||
if read_bytes < blocksize:
|
||||
break
|
||||
|
Loading…
Reference in New Issue
Block a user